
Eleventh International Workshop on Algebraic and Combinatorial Coding Theory
June 16-22, 2008, Pamporovo, Bulgaria pp. 229-235

Recent results in combined coding for
word-based PPM
Radu Radescu rradescu@gmail.com
George Liculescu
Polytechnic University of Bucharest, ROMANIA

Abstract. In this paper it is presented the lossless PPM (Prediction by Partial
string Matching) algorithm and it is studied the way the extended alphabet can
be used for the PPM encoding so it will allow the use of symbols which are not
present in the alphabet at the beginning of the encoding phase. The extended
alphabet can contain symbols with the size larger than a byte and at the decoding
external words absent at decoding are combined with the adaptive-generated words.
The arithmetical algorithm is used to encoding of words with the statistic model
generated by the PPM algorithm. Some experimental results on various types of
files and important interpretations deducted from these results are presented.

1 Introduction
Let us presume that a file contains a string of bytes (characters), which appears
many times in the file. PPM must encode independently every byte from the
string with a probability (which is preferable to have large value). Every time the
character was not found in the past (the string preceding the current context), an
escape symbol is send to decrease the level, leading to increment the information
from the compressed data stream. The alphabet used by the PPM algorithm
has 256 characters (all the characters that can be formed on 8 bits). If the
regular alphabet is extended adding a new symbol (the string mentioned above)
the algorithm could perform a good compression.

An extended alphabet is an enriched known alphabet with a series of symbols
that will not be presented in the alphabet offered to the decoder. The symbols that
extend the alphabet need to be obtained in the decoding phase through different
methods, so while decoding the alphabet will be enriched with new symbols. In
the coding phase, the symbols that will extend the alphabet are known, but at
the decoding these will be deduced gradually.

In this paper, we consider that internal words are present at the decoding
phase because they are internally generated, and they can be reproduced at the
decoding. The external words that could be present at the decoding are inserted
externally at both coding and decoding stages. It is considered an optimization
of the data tree, so it can be used on the purpose of word-based coding (strings
of octets).

In order to minimize the searching time, an optimized algorithm must be used.
The red-black tree is used for searching. The red-black tree is a binary tree, which
keeps inside of every node an extra-information - the color of the node - that can
be red or black. Through the constrain of the way the nodes can be colored with



230 ACCT2008

every line that starts at the base and ends in a leaf, the red-black tree ensures
there is no other way which is longer than the other keeping the tree approximately
balanced. The procedures that can be performed are that of a classic binary tree.
The method used here is dedicated only to the PPM algorithm and it performs
the adaptive search of the words.

2 PPM encoding with the extended alphabet

The extended alphabet encoding is similar to the basic alphabet one (made up
of every 8 bits symbols). In order to determine which word is next coded, we
need to check all the words, which can be made up based on the text bytes,
starting from the current position from the considered coding stage. The length
of words that can be formed with the text bytes must be smaller or equal to the
maximum admitted length and smaller or equal to the maximum length present
in the source alphabet. Every formed word is searched in the alphabet and if it
is found, a gain is associated to it. In order to compute the gain, we must have
information regarding the current state of every word from the alphabet (number
of appearances, length, etc.).

The gain can be calculated in many ways, but here it will be calculated as a
function of number of appearances and length. Usually, a formula for computing
the gain should be used, and this would depend on the context where the word is
situated.

In order to know the value of the word from the context point of view, a search
in the tree must be performed. This search must be made for every word that
has a chosen potential, this being a very big extra task. For this reason, in order
to compute the gain, we will use the real number of appearances (imposed on
inside basis), in the case of internal words, or the maximum between the real and
false number of appearances (imposed on outside basis), for external words. The
number obtained from the zero level node gives the real number of appearances.
Therefore, every word will have to keep a reference to the correspondent zero-level
node to find out the real number of appearances.

The external words, which are present at decoding, and the internal ones are
coded using a regular PPM model. In this case, all the tasks that were executed
on bytes must be executed on words. Thus in the tree a word and not a byte
will be inserted, and the context will be one with words and not with bytes. The
saving queue of the 2,048 symbols from the past for the actualization of the tree
after the cleaning (if we want to use it) will contain also words and not bytes.

In order to reduce the time of adding and searching within the tree, all the
words that are in other structures will be references to words from the used al-
phabet. In this way, all the comparisons between words could be made based on
reference, but a comparison between elements will not be made. The only task
that involves comparison between words at byte level is when a word must be
searched inside the alphabet.



Radescu, Liculescu 231

3 Combining the external words with the adaptive
generated words

The encoder and decoder must always keep the same alphabet. When the -1 order
is reached, we must encode a word with the probability (the alphabet length)-
1. If the length of the alphabet is not identical at encoding and at decoding
at that step, then the decoder will not be able to follow the coder’s steps and
the decoding will fail. In the alphabet, there can be external words present at
decoding, external words that are not present at decoding, and internal words
(automatically present at decoding). At the encoding step we know all the words
of any type but at decoding we will not have at any moment all the words that
were considered at encoding external and absent at decoding. For this reason,
when we encode a symbol with a probability dependent on the alphabet length,
we will consider only the words marked as being present at decoding. This is why
it is important that every word which was external and absent at decoding to be
marked as being extern and present at decoding only after this word has been
encoded character by character and was followed by a special word and a counter
type word. The disadvantage of combining external words, which are not present
at decoding, with internal words is that the internal ones have priority, replacing
the external ones absent at the decoding step. The external words are the result
of other algorithms or of user’s experience and many times this can be a useful
information, which may improve the encoding. At the occurrence of an internal
word, which replaces an external one, this useful information is ignored. The
problem is that in the case of external words the lifetime is unlimited while the
lifetime of internal words is limited if they have not been seen a few times in the
past. (the internal words with zero appearance number are erased periodically).
The advantage of this combination is that an absent word at decoding can be
replaced with an adaptive generated one, which is seen many times until the end
of the survival period. Because the adaptive generated word is encoded regularly,
and the word absent at decoding is encoded character by character, the result is
a gain.

4 Experimental results

The next two tables contain the best results obtained in two different experiments,
using both plain and complex test files. The last line from every table represents
the number of bits per character obtained on a compression with the standard
RAR application.

We can remark that the adaptive mode is efficient when the text contains words
that appear repeatedly in the text. For example, it is obvious that aaa looks all
the same and limit comp.xmcd is an XML format that contains elements of the
same type in the tags. If the text has not a predefined structure, then the adaptive
mode will generate words that initially can be good but later could be too long or
too short. At first, a long word can be generated, but later we can find a piece of
text that needs a shorter version of this word (it has a partial match with a text



232 ACCT2008

fragment). This is why it is possible to generate a shorter word if the restrictions
are matched. We can first generate a short word and then a longer word, which
includes the short one. The words that includes other words are efficient if they
are used. Unfortunately, for the files that do not have a well-defined structure it
is likely to be generated words that later will not be used as it should. If the word
was not seen many times in the past, it will have a small probability.

Parameter / File aaa limit comp.xmcd concertBach ByteEditor.exe
Normal 0.01201 5.77123 4.2048 9.32427

Time [sec] 6.783 12.844 10.542 13.846
Adaptive 0.00451 5.57401 4.19925 9.17483
Time [sec] 0.078 17.260 10.330 13.867

gainTypeadaptive Equal Length Equal Length
clearPeriod [octets] 1500 1500 1500 1500

Adaptive / max.word 0.00471 5.51759 4.44394 9.17169
Time [sec] 0.060 18.622 10.392 14.049

gainTypeadaptive Equal Length Equal Appearances
clearPeriod [octets] 1500 1500 1500 1500

Search 0.00431 5.43396 - 9.20337
Time [sec] 0.073 19.289 - 13.478

gainTypesearch Equal Length - Appearances
gainTypecoding Length Length - Length

Search / max.word 0.00431 5.4443 - 9.20337
Time [sec] 0.070 16.257 - 14.092

gainTypesearch Equal Equal - Appearances
Adaptive / Search 0.00411 5.42187 - 9.18202

Time [sec] 0.401 20.542 - 13.809
gainTypeadaptive Length Appearances - Length
gainTypesearch Appearances Length - Appearances

clearPeriod [octets] 1500 1500 - 1500
Adaptive / Search 0.00521 5.4284 - 9.17326

/ max.word
Time [sec] 0.065 20.566 - 14.050

gainTypeadaptive Appearances Length - Appearances
gainTypesearch Appearances Equal - Appearances

clearPeriod [octets] 1500 1500 - 1500
RAR (”best” mode) 0.01141 3.7816 2.53007 7.30202

Table 1. Comparison of the best results (first experiment)

From the performed experiments this negative effect was not noticed. For
every file, the adaptive search produced better results. The adaptive search of
words cannot see in the future and cannot view which is the best word to choose.
This is why the adaptive search is recommended only for files with a specific
structure. We can remark that it is best to use the word with the biggest length
when the text has a defined structure, because it is very likely that this will show
in the future.

The most efficient from the compression point of view is the search of words
that appear repeatedly, before the encoding. For the files that contain redundant
words which can be seen in a period of existence of a word (clearPeriod) so
they can be added in the alphabet, the adaptive searched is combined with that
performed in a separate stage from the encoding.



Radescu, Liculescu 233

The aaa file is compressed the best by using the adaptive search together
with that performed before the encoding, because the search of words in a separate
stage is limited to 255 (bytes), while the adaptive search is unlimited. The encoder
uses words found by search, in a separate phase, and it adaptively extends them
based on the data tree. For the experiments, the adaptive search was limited to
the length of 1,000.

Parameter / File paper1 progc obj1 trans
Normal 3.78187 3.84196 5.38653 2.52419

Time [sec] 7.059 5.468 4.801 10.452
Adaptive 3.78157 3.82035 5.11496 2.51019
Time [sec] 6.880 5.359 4.636 11.340

gainTypeadaptive Appearances Appearances Length Appearances
clearPeriod [octets] 1500 1500 1500 1500

Adaptive / max.word 3.89955 3.8975 5.07924 2.60624
Time [sec] 7.047 5.411 4.704 12.266

gainTypeadaptive Equal Equal Length Equal
clearPeriod [octets] 1500 1500 1500 1500

Search 3.77736 3.80298 5.18936 2.45068
Time [sec] 9.549 4.952 4.056 21.223

gainTypesearch Length Appearances Appearances Equal
gainTypecoding Equal Length Length Length

Search / max.word 3.78006 3.80298 5.20945 2.45068
Time [sec] 9.560 4.940 4.115 21.196

gainTypesearch Length Appearances Appearances Equal
Adaptive / Search 3.7915 3.82076 5.12128 2.46476

Time [sec] 9.874 5.977 4.656 22.842
gainTypeadaptive Appearances Appearances Equal Appearances
gainTypesearch Length Equal Appearances Equal

clearPeriod [octets] 1500 1500 1500 1500
Adaptive / Search 3.8699 3.89488 5.07961 2.57713

/max.word
Time [sec] 9.399 7.315 5.402 20.992

gainTypeadaptive Appearances Equal Length Appearances
gainTypesearch Length Length Appearances Equal

clearPeriod [octets] 1500 1500 1500 1500
RAR (”best” mode) 2.20748 2.23312 3.65365 1.26385

Table 2. Comparison of the best results (second experiment)

The ByteEditor.exe file is an executable file, which is extended and not
compressed. The problem comes from the PPM classic encoder and not from the
extended alphabet. A smaller size is obtained with the help of adaptive search.

The concertBach file did not contain words that will match the rules imposed
by the search in other stage than that of coding, so for this reason any experiment
that had this type of search was not performed.

We can observe that the best performances of the aaa, limit comp.xmcd
and progc.cs compression is obtained by combining the adaptive search with that
performed in a separate stage. This phenomenon is present because the coding
of a missing word at the encoding means the coding of every of its character,
while the coding of a present word does not have these disadvantages. If it is
found a word with the adaptive search and this is present in the alphabet and is



234 ACCT2008

absent at decoding, then it is replaced with the one adaptively generated. After
the insertion of the word in the text, we find (until the end of the word’s existing
period) a match with this word and therefore we have a gain because the word
has not been coded character by character. In the case when the external word
(absent at decoding) was replaced by an adaptive generated word that will not
be found in the text, then we have a loss.

The encoding time usually increases compared to the PPM with regular al-
phabet because the words represented by strings of bytes, not only by bytes, must
be checked. The file aaa is a special case where the coding time drops because
there are few words, of very big length, which are coded.

The concertBach and ByteEditor.exe files are better coded by using the
adaptive search because the restrictions imposed to the search performed in a
separate stage of that of coding are too strong. These texts contain short words
that appear repeatedly, and the adaptive search manages to find some of them
because its minimum length is 5, while for the search before coding the minimum
length is 20. For all the test files, the same encoding parameters were used. For
this reason, we cannot say these are the best results that can be obtained. Still,
an improvement is obtained.

Table 3 presents the experimental results obtained by using the adaptive search
encoding for a larger set of original file types. One can analyze the compression
efficiency obtained when all the words are accepted in the alphabet and the value
of the existing period of a word (clearPeriod) is big. (e.g., 20,000 bytes).

File Bits/character Time [sec]
aaa 0.00510 0.030

limit comp.xmcd 5.08220 78.550
concertBach 3.80084 34.441

ByteEditor.exe 9.18898 18.288
paper1 3.57781 23.326
progc 3.58870 16.224
obj1 4.92113 9.789
trans 2.40917 40.403

Table 3. Parameters for adaptive search without restrictions

One can see that for the proposed files the use of the adaptive search combined
with the adding of words with no restrictions has better compression results but
less quality time results from the gain and minimum length point of view. The
time increases because there are many words in the alphabet and their search
lasts a long time. The compression ratio is better because the words are early
discovered and used. Although the alphabet has many words and the probability
of a word at the -1 prediction level (the reverse value of the alphabet length) is
small, the encoding is not strongly influenced by this because the -1 level situations
are rare.

5 Conclusions
The most efficient is the search before the encoding together with the use of
maximum length word at the encoding. The adaptive search can be performed



Radescu, Liculescu 235

in the case of files with many repeating words and has the advantage that it is
performed at the coding phase. The combining of the two procedures of search
can be used only for a certain types of files that contain words that get repeated
nearby (so that the adaptive search can find them) and words situated much apart
in the text so they won’t be included in the alphabet by the adaptive search. From
the tests, it results that the gain function depends on the type of used files for
most of the files. The difference between the extended alphabet PPM encoding
and the WinRar compression is about 1.5 bits/character. The file aaa (plain text)
is compressed better with the extended alphabet PPM. From the previous results,
one can observe that the encoding with adaptive search without restrictions is the
most efficient and most files are compressed better with extended alphabet PPM.

References
[1] A. Moffat, Implementing the PPM Data Compression Scheme, IEEE Trans.

Commun. 38, 1990.
[2] Th. H. Cormen, Introduction to Algorithms, Ch. E. Leiserson , R. L. Rivest

eds., The MIT Press. 1999.
[3] N. Abramson, Information Theory and Coding, McGraw-Hill, NY, 1963.
[4] T. Bell , I. H. Witten, J. G. Cleary, Modeling for Text Compression, ACM

Computing Surveys 21, 1989.
[5] Pr. Skibinski, PPM with the Extended Alphabet, Inform. Sci. 176, 2006.
[6] J. Bentley, D. McIlroy, Data compression using long common strings, Inform.

Sci. 135, Part 1-2, June 2001.
[7] A. T. Murgan, The Principles of Information Theory in Information and

Communication Engineering, Romanian Academy Press, Bucharest, 1998.
[8] R. Radescu, Lossless Compression - Methods and Applications, Matrix Rom

Press, Bucharest, 2003.
[9] M. Nelson, The Data Compression Book, 2nd Ed., J.-L. Gailly ed., M&T

Books, 1995.
[10] *** Data Compression - The Complete Reference, 3rd Ed., D. Salomon ed.,

Springer-Verlag, 2004.
[11] *** Lossless Compression Handbook, 1st Ed., Kh. Sayood ed., Acad. Press,

2002.
[12] R. Radescu, C. Harbatovschi, Compression methods using prediction by par-

tial matching, Proc. 6th Intern. Conf. Commun., Bucharest, 2006, 65-68.
[13] R. Radescu, R. Popa, On the performances of symbol ranking text com-

pression method, Sci. Bull. ”Politehnica” Univ. Timisoara, Romania, Trans.
Electr. Commun., Electr. Telecomm. Symp. 49, ETC 2004, 25-27.

[14] The Calgary Corpus:
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus

[15] www.winrar.com


