
Eleventh International Workshop on Algebraic and Combinatorial Coding Theory
June 16-22, 2008, Pamporovo, Bulgaria pp. 221-228

Procedures of extending the alphabet for
the PPM algorithm

Radu Radescu rradescu@gmail.com
George Liculescu
Polytechnic University of Bucharest, ROMANIA

Abstract. In this paper it is presented the lossless PPM (Prediction by Partial
string Matching) algorithm and it is studied the way the alphabet can be extended
for the PPM encoding so it will allow the use of symbols which are not present in the
alphabet at the beginning of the encoding phase. The extended alphabet can contain
symbols with the size larger than a byte. The paper presents the manner to extend
the alphabet and the changes that need to be made to the PPM algorithm in order
to use the extended alphabet. Three ways to extend the alphabet are proposed:
manual, through a run over the text (executed before the encoding phase), and
specialized (adapted during the evolution of the algorithm).

1 Introduction

Let us presume that a file contains a string of bytes (characters), which appears
many times in the file. PPM must encode independently every byte from the
string with a probability (which is preferable to have large value). Every time
the character was not found in the past (the string preceding the current con-
text), an escape symbol is send to decrease the level, leading to increment the
information from the compressed data flow. The alphabet used by the PPM
algorithm has 256 characters (all the characters that can be formed using 8
bits). If the regular alphabet is extended adding a new symbol (the string men-
tioned above) the algorithm could perform a good compression. An extended
alphabet is an enriched known alphabet with a series of symbols that will not
be presented in the alphabet offered to the decoder. The symbols that extend
the alphabet need to be obtained in the decoding phase through different meth-
ods, so while decoding the alphabet will be enriched with new symbols. In the
coding phase, the symbols that will extend the alphabet are known, but at
the decoding these will be deduced gradually. Three solutions to extend the
alphabet are considered:

1. manual adding of the words by the user;
2. search of the words that get repeated using a certain criterion (length,

number of appearances, etc.) in a first step by running through the entire
text and then adding these words to the alphabet;

3. adaptive search of the text words during the algorithm evolution.
In this paper, we consider that internal words are present at the decoding

phase because they are internally generated, and they can be reproduced at the
decoding.

222 ACCT2008

2 The manual adding of text words
From the three options, this one is the simplest because it is based on the user
experience and has no need for additional processing. For adding of a text
word from the manual point of view, it is necessary to define all the parameters
involved: length, number of appearances, presence at the decoding, and gain.
The length of the word to be added is known. The number of appearances and
the presence at the decoding must be set up manually. The set up number of
appearances and the length will determine the gain of the text word. In this
way, we can set manually the significance of the word. Implicitly, the manual
added words would be marked as external.

3 The search of words by running through the text
The suggested solution in this paper is based on the suffix vector. This contains
all the suffixes from a string, lexicographically ordered. For example, if we
consider the abracadabra string, then the suffixes of this string will be (see
Figure 1):

Suffix Position
abracadabra 0
bracadabra 1
racadabra 2
acadabra 3
cadabra 4
adabra 5
dabra 6
abra 7
bra 8
ra 9
a 10

sorting =⇒

Suffix Position
a 10
abra 7
abracadabra 0
acadabra 3
adabra 5
bra 8
bracadabra 1
cadabra 4
dabra 6
ra 9
racadabra 2

Fig. 1. The suffix vector.

To obtain a suffix vector we need to extract the suffixes and sort them. It
can be noticed that in the suffix vector the side elements can have identical
characters. We aim only the strings that start with the first character from
the left of the suffix and are continued through the right. Based on this we
can determine strings that are repeated in the text. These characters can make
up words, which can be used to extend the alphabet used at the encoding In
the suffix vector, we can find many words that are repeated but only few of
them will be of some interest. To find out which words are significant we will
need to induce some restrictions. To do this we will attach to every word a
gain with which we will determine its significance. The restrictions will be
related to the minimum length, the maximum length, and the minimum gain.

Radescu, Liculescu 223

If a match does not have at least the minimum length then it is treated like it
did not exist. In order to calculate the gain we need to know the length and
the number of appearances. We know the length of the word but finding the
number of appearances is a problem. To solve this problem we need to have
a view only of words that do not overlap. The words that overlap cannot be
compared because an exact delimitation does not appear so we cannot say that
both of them exist at the same time in the compression string, because only one
word can be coded. Knowing the text from where the suffixes are extracted, it
is enough to keep a position vector from where the suffixes begin and a length
vector, which will indicate the accepted lengths for every suffix, which begins
at that position. When we want to sort the suffixes, we compare the suffixes
that start at the specified positions in the position vector. The sorting of the
suffixes will result in an arrangement of the positions in the position vector and
the of length in the length vector (see Figure 2). The length vector, as it will
be shown next, will help to solve the overlapping of words extracted from the
text. The length of a suffix can be at most the maximum set up length. To
keep track of the found words we will create a list, where every record will be
made up of the positions where the word is found and the length of the word.
The number of positions on which the word is situated will give the number of
appearances.

Position Length
0 l0
1 l1
2 l2
3 l3
4 l4
5 l5
6 l6
7 l7
8 l8
9 l9
10 l10

sorting =⇒

Position Length
10 l10

7 l7
0 l0
3 l3
5 l5
8 l8
1 l1
4 l4
6 l6
9 l9
2 l2

Fig. 2. The sorting of suffixes.

A record from the list will look like this (see Figure 3):

Position 1 Position 2 Position n Length
Fig. 3. A recording from the word list.

Example. We will run through the suffix vector and we will compare, in
this order, pairs of suffixes: a with abra, abra with abracadabra, · · · , dabra
with ra, and ra with racadabra. For every pair of suffixes, we will find identical
characters or not. Every time we find a word, this will be added in the list by

224 ACCT2008

creating a new record (in the case the word does not exist in the list) or by
adding the position where it was found. We can see that a and abra have only
the a character in common, and abra and abracadabra have the abra string
in common. We can say that a is found in the a & abra suffixes, and in
abracadabra. So the a recording will have three positions. abra is found in abra
and in abracadabra so the abra recording will have two positions. We can see
that the positions from abra can be found in a, because a is part of abra. This
means the shorter strings from the word list that are part of other longer strings
must have at least the positions of the longer strings.

Remark. If two suffixes do not have a character in common, then from that
point there will be no suffixes having characters in common with the suffixes
before that point. This means that portions of the suffix vector can be treated
separately. For example, the suffixes from below do not have any character in
common with the rest of the suffixes (see Figure 4).

Suffix Position
a 10
abra 7
abracadabra 0
acadabra 3
adabra 5

Fig. 4. Suffixes that have at least one character in common.

Because we mentioned above that shorter strings that are part of longer
strings must have at least the positions of the longer strings, we need to find
a practical way to accomplish this. We can see that if between two suffixes on
the p1 and p2 positions there is a n length match, then we need to update all
the recordings smaller or equal to n and that are involved in that match. In
order to reduce the number of steps, every time a match is found, and is smaller
than the last record from the list, all the element from the list smaller or equal
to n will be moved, and we will store the pmoved position in the list in which
the element has been moved. This means that pmoved will be the end of the
list before the move. From the pmoved position to the end of the list, the p2
position will be added in every record. If the n length match does not exist in
the list, it will be added.

Example. In Figure 4, a and abra have in common a so a will be added
in the list together with positions 10 and 7 because it is a new word and the
list is empty. abra and abracadabra have abra in common so it will be added
the 0 position to the previous recordings, after that abra is added in the list
with 7 and 0 positions because it is a new word. This means that until now
the list contains a and abra. abracadabra and acadabra have in common only
a. Because a has length 1, it is smaller than the last recording (abra) so any
word with length smaller or equal to 1 will be moved to the end of the list. As
a result, the list that contained the recordings (in this order) a, abra now will

Radescu, Liculescu 225

have the recordings abra, a. This means that the last record will be added to
the position where the new a was found, and this is 3 (see Figure 5).

a 10, 7 =⇒ a 10, 7, 0
abra 7,0

=⇒ abra 7, 0
a 10, 7, 0, 3

Fig. 5. Suffixes that have at least one character in common.

Because we need all the words from the list that have at least one character
in common with analyzed suffixes, we cannot solve the overlapping between
the words until there will be no suffixes that would have a common character
with the ones in the list. This way, we will solve the overlapping each time
there are no characters in common between the two currently analyzed words.
The solving of the overlapping will be handled only inside of a recording from
the list, because it is very demanding the check the positions of every recording
through the comparison with the other recordings. In addition, keeping of some
positions must be settled according to the gain. If there is an overlapping of
the recordings, we cannot calculate the gain. This means that the adopted way
will be to search the word that has a maximum gain and its positions do not
overlap one another but can overlap with other words. After finding this word,
we will mark the positions from the input text where the word is found as being
occupied. After this, we repeat the search algorithm for a new word. In this
manner, the founded words will not overlap. This procedure will repeat until
no word can be found under these conditions.’

4 Adaptive search of the words
The first two methods can be used along with any compression algorithms.
Only the PPM algorithm uses the method described below. To form the words,
we will use the tree, with the help of which the contexts are maintained. The
tree is changed every time we wish to insert a word. The tree has all the past
contexts, if it has not been emptied to save memory, or only a part of them
(from a near past). In the case the inserted word has been preceded by the
same context in the past, the number of appearances is incremented and added
to the actualization list. In the case the PPM context has been spotted as
being followed by the algorithm word 5 times, we can say that in the past
PPM algorithm has been seen 5 times. This means a word discovery can be
made similar to the run through method previously described. Therefore if a
minimum length, a maximum length and a minimum gain are set, some words
created with the tree can be considered.

When a word, which is added in the three, has been seen preceded by a
certain context, the tree is run through, starting from that word preceded by the
context to the root. This means we begin at the node that has the certain word
and we move to his parent, then his grandparent, and so on until we reach the
root. Every time a move is made, the word from the current node is inserted in a
stack and a total length variable is incremented that holds the length of the word

226 ACCT2008

added in the stack. If the value of total length is at least the minimum set length
then the word preceded by that context is considered for further checking. In the
case the gain calculated based on the minimum of total length and the maximum
set length and based on the number of appearances of the word preceded by
the context is at least the minimum set gain, then the word preceded by the
context is considered for further checking. Next, the words are extracted one
by one from the stack and are concatenated until the stack is empty or until
the maximum length is reached. This way, a word is constructed that may of
may not be added to the alphabet. If the word is not in the alphabet, then it
is inserted. The added word will have a number of appearances equal to zero
and will be marked as being intern so it will be present at decoding.

Normally we are tempted to be less restrictive with the limits imposed on
making of a new word, for it to exist in the alphabet. A word that already exists
in the alphabet has the chance to be used as soon as possible. If the limits are
too restrictive, the process of using a word will be much delayed. The setting of
less restrictive rules will produce the negative effect of congesting the alphabet
because numerous words are in the set limits. Because of this, we must have
a compromise. Because the less restrictive rules allow the words to be used
soon, the problem of the large number of generated words must be solved. The
solution is the periodical cleaning of the alphabet (after a number of bytes).
This way, we will search words that have not been used and are marked as being
intern. The words are unused if the real appearances number (set from inside)
is zero. If a word has been used at least one time in the encoding stage then it
remains in the alphabet, and can no longer be eliminated. This may lead to the
growth of the alphabet. This is why a maximum admitted memory would be set
for the storing of words. If this memory is exceeded, then the extern words are
kept and the intern ones are sorted decreasingly by the gain. Another memory
limit will be set for the reducing of the alphabet. The structure is presented in
Figure 6.

Example. In Figure 6, we considered that the last added word, a, had the
length 1. Therefore, the actualization list will be formed from the nodes with
thick lines. We consider the restrictions: minimum length = 3, maximum length
= 6, and minimum gain = 6, the gain being computed using the formula length
× length × appearances. We can form 3 words at most because there are 3
thickened nodes besides the root, which cannot participate at the forming of
the word because they do not contain a word. The 3 words will be:

1) The first node that is checked is the thickened one from the level 3. We
insert in a stack all the words from the path that starts at the current analyzed
node and ends at root. In order to do this, we use pointers that indicate the
parent of every node. In the stack, the words will be placed in the following
order: a, a, merge. The total length is 6. We can see that the total length,
which is 7, is larger than the minimum length, which is 3. mergeaa was seen 7
times.

Radescu, Liculescu 227

Fig. 6. The adding of the pointer that indicates the parent.

As a result, the gain will be length × length × appearances= 6×6×7=252 ,
because the minimum between the total length and the maximum length is 6.
We can observe that this gain is bigger than the minimum gain, which is 6. This
means this word has all the characteristics to be used to extend the alphabet.
Next, we extract the elements from the stack and we concatenate them until
we reach the maximum length or the stack is left with no elements. The result
string will be: mergea (was going in Romanian) and not mergeaa, because the
maximum length is 6 (see Figure 7). The word is checked if it already exists in
the alphabet. If it is not present, then it is added.

merge
a
a

=⇒ merge a a

Fig. 7. The creation of a text word based on the information from the tree.
2) The second node that will be checked is the thickened one from level 2.

We insert the words in the stack in the following order: a, a. The total length
is 2 and it is smaller than the minimum set length, which is 3. This means we
cannot form a word because it does not match the set limits.

3) The third node that will be checked is the thickened one from level 1.
This time the only word inserted in the stack is a. Because the total length is
1, we will not be able to create a word with the use of this node, because the
minimum length is 3. It is not possible to create a new word with only a node
from the first level, even if this matches the set limits, because the word from
a single node is certainly in the alphabet.

228 ACCT2008

References

[1] A. Moffat, Implementing the PPM Data Compression Scheme, IEEE
Trans. Commun. 38, 1990.

[2] Th. H. Cormen, Introduction to Algorithms, Ch. E. Leiserson , R. L. Rivest
eds., The MIT Press. 1999.

[3] N. Abramson, Information Theory and Coding, McGraw-Hill, New York,
1963.

[4] T. Bell , I. H. Witten, J. G. Cleary, Modeling for Text Compression, ACM
Computing Surveys 21, 1989.

[5] Pr. Skibinski, PPM with the Extended Alphabet, Inform. Sci. 176, 2006.

[6] J. Bentley, D. McIlroy, Data compression using long common strings, In-
form. Sci. 135, Part 1-2, June 2001.

[7] A. T. Murgan, The Principles of Information Theory in Information and
Communication Engineering, Romanian Academy Press, Bucharest, 1998.

[8] R. Radescu, Lossless Compression - Methods and Applications, Matrix
Rom Press, Bucharest, 2003.

[9] M. Nelson, The Data Compression Book, 2nd Edition, Jean-Loup Gailly
ed., M&T Books, 1995.

[10] *** Data Compression - The Complete Reference, 3rd Edition, David Sa-
lomon ed., Springer-Verlag, 2004.

[11] *** Lossless Compression Handbook, 1st Edition, Khalid Sayood ed., Aca-
demic Press, 2002.

[12] R. Radescu, C. Harbatovschi, Compression methods using prediction by
partial matching, Proc. 6th Intern. Conf. Commun., Bucharest, Romania,
2006, 65-68.

[13] R. Radescu, R. Popa, On the performances of symbol ranking text com-
pression method, Sci. Bull. ”Politehnica” Univ. Timisoara, Romania,
Trans. Electr. Commun., special issue dedic. Electr. Telecomm. Symp. 49,
ETC 2004, 25-27.

[14] The Calgary Corpus:
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus

[15] www.winrar.com

