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Abstract. In this paper, we consider self-dual codes over the finite ring Zps of
integer modulo ps for any prime p and for an integer s ≥ 4. We start with any
self-dual code in lower modulo and give an necessary and sufficient condition for
the self-duality of induced codes. Then we can give an inductive algorithm for
construction of all self-dual codes and the mass formula in case of odd prime p.

1 Introduction

Since the discovery [4] of a relationship between non-linear binary codes and
linear quaternary codes, there has been enormous interest in codes over the ring
Zm of integers modulo m and finite rings in general. We continue the ongoing
investigations on the family of self-dual codes, from which many of the best
known codes come from. By applying the Chinese Remainder Theorem [2] to
self-dual codes over Zm, it suffices to classify codes over integers modulo prime
powers.

We begin by giving the necessary definitions and notions. A code of length
n over a finite ring R is a R-submodule of Rn. Elements of codes are called
codewords. Two codewords ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) are orthogonal
if their Euclidean inner product ~x · ~y =

∑
i xiyi is zero. Associated to a code

C is a generator matrix, whose rows span C and the number of generators is
minimal.

The dual C⊥ of a code C over a ring R consists of all elements of Rn which
are orthogonal to every codeword in C. A code C is said to be self-dual (resp.
self-orthogonal) if C = C⊥ (resp. C ⊆ C⊥).
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2 Condition for self-duality of codes over Zps

Every code C of length n over Zps has a generator matrix which, after a suitable
permutation of coordinates, can be written as

C =




T1

pT2

p2T3
...

ps−1Ts




=




Ik1 A11 A12 . . . A1s−1 A1s

0 pIk2 pA22 . . . pA2s−1 pA2s

0 0 p2Ik3 . . . p2A3s−1 p2A3s
...

...
. . . . . .

...
...

0 0 0 . . . ps−1Iks ps−1Ass




,

where Iki is the ki × ki identity matrix, and the other matrices Aij ’s (1 ≤ i ≤
j ≤ s) are considered modulo pj−i+1. When we denote the inverse matrix of
[Ti]i=1,...,s+1 with an additional Ts+1 = (0 0 . . . 0 Iks+1) by [T ∗i ]ti=1,...,s+1, we

have C⊥ =
[
pi−1T ∗s+2−i

]t

i=1,...,s
. Thus we see that a necessary and sufficient

condition for the self-duality of C is k1 = ks+1, . . . , ki = ks−i+2, . . . and C is
self-orthogonal. And we have following proposition and lemma.

Proposition 1 Let C =
[
pi−1Ti

]
i=1,...,s

be a code over Zps with Ti = (0 . . . 0 Iki

Aii . . . Ais). Then C is a self-dual code if and only if ki = ks−i+2 for i =
1, . . . , s + 1 and the following holds:

TiT
t
j ≡ 0 mod ps−i−j+2, (1)

for any integers i and j such that 1 ≤ i ≤ j ≤ s and i + j ≤ s + 1.

Lemma 1 When the condition (1) in Proposition 2.1 holds, the rank of ki ×
(k1 + · · · + ki) matrix (Ais+1−iAis+2−i . . . Ais) (1 ≤ i < s+1

2 ) is equal to ki.
Especially when i = 1, we have that A1s is invertible.

Proof. We rewrite the condition (1) using A’s, and we have two modulo p condi-

tions Iki ≡ −
s∑

l=i

AilA
t
il and Aij−1 ≡ −

s∑

l=j

AilA
t
jl for i < s+1

2 . By recursive sub-

stitution, we have Aij−1 ≡
s∑

l=s+1−i

AilA
′t
jl (∃A′jl), and Iki ≡ (Ais+1−i . . . Ais)Ct

i

(∃Ci). This completes the proof. ¤
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3 Codes over Zps from a code over Zps−2

Now we consider the code C′ of length n = k1 + k2 + · · · + ks+1 over Zps−2

reduced from a self-dual code C as

C′=




T ′1
T ′2
pT ′3
...

ps−3T ′s−1



=




Ik1 A11 A′12 . . . A′1s−2 A′1s−1 A′1s
0 Ik2 A22 . . . A2s−2 A2s−1 A′2s
0 0 pIk3 . . . pA3s−2 pA3s−1 pA′3s
...

...
. . . . . .

...
...

...
0 0 0 . . . ps−3Iks−1 ps−3As−1s−1 ps−3A′s−1s



,

To see the self-duality condition, we substitute s− 2 for s, i− 2 and j − 2 for

(3 ≤)i and j respectively, and
[

T1

T2

]
for T1 in (1). Then we have T1T

t
1 ≡ 0

mod ps−2, T1T
t
j ≡ 0 mod ps−j , and TiT

t
j ≡ 0 mod ps−i−j+2 (2 ≤ i ≤ j ≤

s − 1). The third conditions are the completely same as that for C, and the
first and the second conditions hold as the corresponding equations for C are
T1T

t
j ≡ 0 (mod ps−j+1) for any j ≤ s. Since we also have k1 + k2 = ks+1 +

ks, k3 = ks−1, . . ., we see that C′ is again self-dual.
Conversely we start with a self-dual code C′ of length n = k′1 + k3 + . . . +

ks−1+k′s+1 over Zps−2 . At first, we divide the part of generation vectors modulo
p of dimension k′1 into two parts of dimension k1 and k2, and we also divide last
k′s+1(= ks + ks+1 = k1 + k2) columns into two parts, like as described above.
We should notice that different matrix at (1,2)-entry might induce a different
code over Zps .

Before starting the construction of C over Zps , we need an important per-
mutation operation. From Lemma 1, we see that (ks +ks+1)-size square matrix(

A′1s−1 A′1s

A2s−1 A′2s

)
(mod p) is invertible. So by some column permutation, we

can suppose that A′1s (mod p) is invertible. Moreover we need to make some
kind of modification by adding k1 × ki matrix times T ′i to T ′1 since A1is’ are to
be considered in mod pi not in mod pi−1 in C.

Now we denote the resulted matrices by A1i (i = 2, . . . , s− 2), and for such
a given self-dual code C′ over Zps−2 in the above form, we will construct the
code C by multiplying p to pi−2Ti (i = 2, . . . , s− 1) and adding a new ps−1Ts in
the bottom. All Aij ’s except for Ais (i = 1, . . . , s−1) and A1s−1 are considered
in the same modulo as in C′. For any i, Ais is defined modulo ps−i+1 and A1s−1

is modulo ps−1. Since A′is is defined modulo ps−i for i ≥ 2, A′1s is modulo ps−2,
and A′1s−1 is modulo ps−2 in C′, we need following extension

T1 = T ′1 + ps−2U1 + ps−1V and Ti = T ′i + ps−iUi (2 ≤ i ≤ s− 1) (2)

where U1 = (0 . . . A
(1)
1s−1 A

(1)
1s ), V = (0 . . . 0 A

(2)
1s ), Ui = (0 . . . 0 A

(1)
is )

(i = 2, . . . , s− 1) for some modulo p matrices A(1)’s and A(2).
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We have remaining two types of conditions in (1) for the self-duality of
C′. One is T1T

t
i ≡ 0 mod ps−i+1 under the codition T ′1T

′t
i ≡ 0 mod ps−i

for 2 ≤ i, which becomes T ′1T
′t
i + ps−2U1T

′t
i + ps−iT ′1U

t
i ≡ 0 mod ps−i+1 by

substituting the right-hand sides of (2) and taking the assumption that 4 ≤ s
and 2s− i− 2 = s− i + 1 + (s− 3) in mind. If 3 ≤ i, then s− i + 1 ≤ s− 2 and
the equation is T ′1T

′t
i +ps−iA1sA

(1)t
is ≡ 0 mod ps−i+1, and we have A

(1)t
is (3 ≤ i)

is uniquely determined as A
(1)t
is ≡ −A−1

1s

(
1

ps−i T
′
1T

′t
i

)
mod p. If i = s, then

At
ss ≡ −A−1

1s A1s−1 mod p. If i = 2, then T ′1T
′t
2 + ps−2(A(1)

1s−1A
t
2s−1 + A

(1)
1s At

2s +

A1sA
(1)t
2s ) ≡ 0 mod ps−1. Thus we have that A

(1)t
2s is also uniquely determined

as A
(1)t
2s ≡ −A−1

1s

(
1

ps−2 T ′1T
′t
2 +A

(1)
1s−1A

t
2s−1 +A

(1)
1s At

2s

)
mod p for any A

(1)
1s−1 and

A
(1)
1s . The other condition can be rewritten as 0 ≡ T ′1T

′t
1 +ps−2T̃ ′1U

t
1 +ps−1T̃ ′1V t

mod ps, with X̃ = X +Xt. This includes the condition for A
(1)
1s−1 and A

(1)
1s , and

using them we have following essential condition

T ′1T
′t
1 + ps−2(

˜
A1s−1A

(1)t
1s−1 +

˜
A1sA

(1)t
1s ) + ps−1 ˜

A1sA
(2)t
1s ≡ 0 mod ps. (3)

From now on, we consider the equation above only in odd p case.
˜

A1sA
(1)t
1s ≡

−
(

1
ps−2 T ′1T

′t
1 +

˜
A1s−1A

(1)t
1s−1

)
mod p is given by reducing (3) modulo ps−1. We

put (xij) = A1sA
(1)t
1s and put (dij) the right-hand side of the equation for any

k1 × k2 matrix A
(1)
1s−1. Then the necessary and sufficient condition for xij are

xji = dij − xij mod p (i < j), and xii = 1
2dii. For any p

1
2
k1(k1−1) number

of (xij) satisfying above, A
(1)t
1s is uniquely detemined by A−1

1s (xij) (mod p).

Once A
(1)t
1s is determined, the condition (3) is just equivalent to

˜
A1sA

(2)t
1s ≡

−1
p

(
1

ps−2 T ′1T
′t
1 +

˜
A1s−1A

(1)t
1s−1+

˜
A1sA

(1)t
1s

)
mod p. We also put (yij) = A1sA

(2)t
1s

and put (fij) the right-hand side of the equation. Then the necessary and
sufficient condition for yij are yji = fij − yij mod p (i < j), and yii = 1

2fii.
For any p

1
2
k1(k1−1) number of (yij) satisfying this, A

(2)t
1s is uniquely detemined

by A−1
1s (yij) (mod p). Thus we have self-dual codes over Zps and the following

lemma.

Lemma 2 The number of self-dual codes over Zps of type (k1, k2, . . . , ks+1)
induced from a self-dual code over Zps−2 of type (k1 + k2, k3, . . . , ks + ks+1) is

ρ(k1 + k2, k1)× pk1
∑s−1

i=3 ki × pk1k2+k1(k1−1) = ρ(k1 + k2, k1)pk1(n−k1−k2−1),

where ρ(n, k) =
∏k

j=1(p
n − pj−1)/

∏k
j=1(p

k − pj−1), the number of subspace of
dimension k of a vector space over Fp = Zp of dimension n.
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Proof. The number of possible partitions
[

T ′1
T ′2

]
in C′ is given by considering

the map C′ ps−1

−−−→ ps−1C′ −→ 0. The kernel is < pT ′1, pT ′2, pT ′3, ..., p
s−3T ′s−1 > and

noticing that the submodule is to be considered in < T ′1, pT ′2, p
2T ′3, ..., p

s−1T ′s >,
we should count the multiple of the number of partitions in the vector space
ps−1C′ and a kind of modifications of T ′1 by T ′3,..., T ′s−1. The number of par-
titions in the vector space is just ρ(k1 + k2, k1) from the lemma3.2 in [5]. As
the modifications are done by adding any k1 × ki matrix times T ′i to T ′1, the
number of such modification is just equal to pk1×k3 × pk1×k4 × · · · × pk1×ks−1 =
pk1

∑s−1
i=3 ki = pk1(n−2(k1+k2)). ¤

When we calculate the product of ρ(ni, ki), we have following lemma.

Lemma 3
m∏

i=1

ρ(ni, ki) =
∏nm

i=1(p
i − 1)∏m

i=1

∏ki
j=1(pj − 1)

, with ni = k1 + · · ·+ ki (i = 1, ...,m).

Now we have the following formulae.

Theorem 1 Let Nps(n; k1, ..., ks+1) be the number of self-dual codes over Zps

of type (k1, ..., ks+1) for an odd prime p and for an integer s (1 < s). And put
ni = k1 + · · ·+ ki for i = 1, ...,

[
s+1
2

]
, and put mu =

∑u
i=1 ni(n− ni+1 − 1).

1. If s(= 2u) even, then

Nps(n; k1, ..., ks+1) = Dn,nu

∏nu−1
i=1 (pn−2i−δ − 1)∏u
i=1

∏ki
j=1(pj − 1)

· pmu− 1
2
nu(nu−1),

where Dn,nu =
(

p
n
2
−nu +

(
−1
p

)n
2

)(
p

n
2 −

(
−1
p

)n
2

)
and δ = 0 if n is

even, and Dn,nu = δ = 1 if n is odd.

2. If s(= 2u + 1) odd, then n must be even and

Nps(n; k1, ..., ks+1) =

(
1 +

(−1
p

)n
2

) n
2
−1∏

i=1

(pi+1)
∏nu−1

i=0 (pn−i − 1)∏u
i=1

∏ki
j=1(pj − 1)

·pmu .

Proof. ¿From the lemma 2 and the lemma 3,

Nps(n; k1, ..., ks+1) = Nps−2(n; n2, k3, ..., ks−1, n2)ρ(n2, k2)pn1(n−n2−1)

=





Np2(n;nu, ku+1, nu)
∏nu

i=1(p
i − 1)∏u

i=1

∏ki
j=1(pj − 1)

· pmu−1 (if s is even)

Np3(n;nu, ku+1, ku+1, nu)
∏nu

i=1(p
i − 1)∏u

i=1

∏ki
j=1(pj − 1)

· pmu−1 (if s is odd)

.



220 ACCT2008

If s is even, then from Theorem 3.5 in [1]

Np2(n; nu, ku+1, nu) = Dn,nu

∏nu−1
i=1 (pn−2i−δ − 1)∏nu

i=1(pi − 1)
p

1
2
nu(nu−1),

and we have the resulted formula. If s is odd, then from Theorem 4.1 in [5]

Np3(n; nu, ku+1, ku+1, nu)

=

(
1 +

(−1
p

)n
2

) n
2
−1∏

i=1

(p
n
2
−i + 1)

∏nu−1
i=0 (pn−i − 1)∏nu

i=1(pi − 1)
· pnu(n−nu+1−1),

and we have the resulted formula. ¤

4 Conclusions

We suceeded to give a formula for the number of self-dual codes of a given type
for an odd prime p and for any integers s ≥ 4. In order to obtain the mass
formula for the self-dual codes of length n, we have only to add up the formulae
in theorem 1. Since we already have the mass formula for each Zp, Zp2 , and
Zp3 [1, 3, 5], the mass formula problem for any odd prime is completely solved.

In case of p = 2, Gaborit [3] had the two types of mass formula for the
doubly even binary code and for type II quarternary code. Our construction
algorithm is similarly applied to this case, but somehow complicated because
we need douby even property. We are now under investigating the mass formula
for codes over Z2s .

References

[1] Balmaceda, J., Betty, R., and Nemenzo, F. Mass formula for self-dual codes
over Zp2 , Discrete Mathematics (to appear).

[2] Dougherty, S., Harada, H., and Solé, P. Self-dual codes over rings and the
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