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Abstract. For an [n, k, d]q code C, we define a mapping wC from PG(k − 1, q) to
the set of weights of C via a generator matrix of C. We give a geometric aspect
derived from wC to investigate the extendability of linear codes. We survey known
extension theorems and some recent results.

1 Introduction

Let Fn
q denote the vector space of n-tuples over Fq, the field of q elements. A

linear code C of length n, dimension k and minimum (Hamming) distance d over
Fq is referred to as an [n, k, d]q code. The weight of a vector x ∈ Fn

q , denoted
by wt(x), is the number of nonzero coordinate positions in x. The weight
distribution of C is the list of numbers Ai which is the number of codewords
of C with weight i. The weight distribution with (A0, Ad, ...) = (1, α, ...) is
also expressed as 01dα · · · . We only consider non-degenerate codes having no
coordinate which is identically zero.

For an [n, k, d]q code C with a generator matrix G, C is called (l, s)-extendable
(to C′) if there exist l vectors h1, . . . , hl ∈ Fk

q such that the extended matrix
[G,hT

1 , · · · , hT
l ] generates an [n + l, k, d + s]q code C′ ([7]). Then C′ is called an

(l, s)-extension of C. A (1, 1)-extendable code is simply called extendable. The
following is well-known.

Theorem 1.1. [1] Every [n, k, d]2 code with d odd is extendable.

As for the (l, s)-extendability, the next theorem is known as ‘Construction
X’.

Theorem 1.2. [1] Let C and C0 be an [n, k, d]q code and an [n, k0, d0]q code,
respectively, such that C ⊃ C0 and d < d0. If there exists an [l, k − k0, d

′]q code
C′, then C is (l, s)-extendable, where s = min{d′, d0 − d}.
Proof. We give an elementary proof using generator matrices. Take a generator
matrix G of C with two submatrices G0 and G1 so that G0 consisting of the first
k0 rows of G is a generator matrix of C0 and that the remaining k− k0 rows of

G form G1. Let G′ be a generator matrix of C′. Then, the matrix
[

G0 O

G1 G′

]

generates an (l, s)-extension of C, where O is the zero matrix. ¤
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For example, every [n, k, d]2 code with odd d contains an [n, k− 1, d0]2 code
with d0 > d as a subcode. It might be possible to find a suitable subcode C0

of C when C is a BCH code, but It is not easy to find such a subcode for an
arbitrary linear code C in general. We sometimes need to know the minimum l
so that C is (l, 1)-extendable.

Problem 1. Find easily checkable conditions to see whether a given [n, k, d]q
code is (l, 1)-extendable or not.

The aim of this paper is to give a geometric aspect to investigate the (l, 1)-
extendability of linear codes and survey known extension theorems with some
applications mainly for l = 1.

2 A geometric approach

We assume that k ≥ 3, see [9] for k = 1, 2. Let C be an [n, k, d]q code with a
generator matrix G = [gij ] = [g1, · · · , gk]T. Put Σ =PG(k−1, q), the projective
space of dimension k − 1 over Fq. We consider the mapping wC from Σ to
{i | Ai > 0}, the set of weights of C. For P = P(p1, . . . , pk) ∈ Σ we define the
weight of P with respect to C, denoted by wC(P ), as

wC(P ) = |{j |
k∑

i=1

gijpi 6= 0}| = wt(
k∑

i=1

pigi).

Let Fd = {P ∈ Σ | wC(P ) = d}. Recall that a hyperplane H of Σ is defined
by a non-zero vector h = (h0, . . . , hk−1) ∈ Fk

q as H = {P = P(p0, . . . , pk−1) ∈
Σ | h0p0 + · · ·+ hk−1pk−1 = 0}. h is called the defining vector of H.

Lemma 2.1. C is extendable if and only if there exists a hyperplane H of Σ
such that Fd∩H = ∅. Moreover, the extended matrix of G by adding the defining
vector of H as a column generates an extension of C.

Proof. For an [n, k, d]q code C with a generator matrix G, there exists a vector
h = (h0, . . . , hk−1) ∈ Fk

q such that [G,hT] generates an [n + 1, k, d + 1]q code if
and only if

∑k−1
i=0 hipi 6= 0 holds for all P = P(p0, . . . , pk−1) ∈ Fd. Equivalently,

there exists a hyperplane H with defining vector h such that Fd ∩H = ∅. ¤

The above lemma can be easily generalized to the (l, 1)-extendability.

Theorem 2.2. C is (l, 1)-extendable if and only if there exist l hyperplanes
H1, . . . , Hl of Σ such that Fd ∩H1 ∩ · · · ∩Hl = ∅. Equivalently, there exists a
(k − 1− l)-flat Π with Fd ∩Π = ∅.
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Lemma 2.3. [3] For two linearly independent vectors a1, a2 ∈ Fn
q , it holds that

∑

λ∈Fq

wt(a1 + λa2) + wt(a2) ≡ 0 (mod q).

As a consequence of Lemma 2.3, we get the following.

Lemma 2.4. For a line L = {P0, P1, · · · , Pq} in Σ, it holds that

q∑

i=0

wC(Pi) ≡ 0 (mod q).

Now, let

F0 = {P ∈ Σ | wC(P ) ≡ 0 (mod q)},
F̄d = {P ∈ Σ | wC(P ) ≡ d (mod q)}, F = Σ \ F̄d.

The mapping wC is trivial if F = ∅. For example, wC is trivial if C attains
the Griesmer bound and if q|d when q is prime [17]. To avoid such cases we
assume that gcd(d, q) = 1. Then we have F0 ⊂ F . If F̄d contains a line L of Σ,
then we have d ≡ 0 (mod q) by Lemma 2.4, a contradiction. Hence we get the
following.

Lemma 2.5. F forms a blocking set with respect to lines in Σ if gcd(d, q) = 1.

Most of the known extension theorems presented in the next section can be
proved by showing that F contains a hyperplane of Σ.

3 Extension theorems and their applications

A q-ary linear code C is w-weight (mod q) if there exists a w-set W = {i1, . . . , iw}
⊂ Zq = {0, 1, . . . , q−1} such that Ai > 0 implies i ≡ ij (mod q) for some ij ∈ W .
The condition ‘d is odd’ in Theorem 1.1 would be replaced by ‘gcd(d, q) = 1’
for general q. But this is not enough for q > 2. In this section, we assume that
C is an [n, k, d]q code with k ≥ 3 and gcd(d, q) = 1. As a solution of Problem
1, Hill & Lizak showed the following for 2-weight (mod q) codes.

Theorem 3.1. [3],[4] Every [n, k, d]q code with gcd(d, q) = 1 whose weights (i’s
such that Ai > 0) are congruent to 0 or d (mod q) is extendable.

Most of the cases one can apply Theorem 3.1 for q > 3 are when d ≡ −1
(mod q).

Corollary 3.2. Every [n, k, d]q code with d ≡ −1 (mod q) whose weights are
congruent to 0 or −1 (mod q) is extendable.
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The following is the first extension theorem for 3-weight (mod q) codes.

Theorem 3.3. [11] Every [n, k, d]q code with odd q ≥ 5, d ≡ −2 (mod q) whose
weights are congruent to 0, −1 or −2 (mod q) is extendable.

Throughout this section, we define the diversity of C as the pair (Φ0, Φ1)
with

Φ0 = |F0| = 1
q − 1

∑

q|i,i>0

Ai, Φ1 = |F \ F0| = 1
q − 1

∑

i 6≡0,d (mod q)

Ai.

Theorem 3.4. [8] Every [n, k, d]q code with gcd(d, q) = 1 is extendable if

Φ1 ≤ qk−3(s(q)− q − 1)/(q − 1)

where s(q) is the smallest size of a nontrivial blocking set in PG(2, q).

Theorem 3.5. [12] Let C be an [n, k, d]3 code with diversity (Φ0,Φ1), gcd(3, d) =
1, k ≥ 3. Then C is extendable if one of the following conditions holds:

(1) Φ0 = θk−3, (2) Φ1 = 0, (3) Φ0 + Φ1 < θk−2 + 3k−2,
(4) Φ0 + Φ1 ≥ θk−2 + 2 · 3k−2, (5) 2Φ0 + Φ1 ≤ 2θk−2,

where θj = (3j+1 − 1)/2.

Theorem 3.6. [12] Let C be an [n, k, d]3 code with diversity (Φ0, Φ1), d ≡ 1
(mod 3), k ≥ 3. Then C is (2, 2)-extendable if

(Φ0, Φ1) ∈ {(θk−2, 0), (θk−3, 2 · 3k−2), (θk−2 + 3k−2, 3k−2)}.
The condition (3) of Theorem 3.5 is generalized for other q as follows.

Theorem 3.7. [10] Let C be an [n, k, d]q code with gcd(d, q) = 1, q = ph, p
prime. Then C is extendable if

∑

i6≡d(mod p)

Ai < qk−2(2q − 1)

and if one of the following conditions holds:
(1) h = 1 (i.e. q is prime),
(2) q = 4,
(3) h = 2 with n ≡ 0 (mod p), d ≡ −1 (mod p),
(4) h = 2 with n ≡ d ≡ 1 (mod p) and Ai = 0 for all i ≡ d (mod p) with

i 6≡ n (mod q).

Theorem 3.7 for q = 4 was first found by Simonis [16]. When h ≥ 3, the
following result is known.
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Theorem 3.8. [10] Let C be an [n, k, d]q code with gcd(d, q) = 1, q = ph, p
prime, h ≥ 3. Then C is extendable if

∑

i 6≡d(mod ph−1)

Ai < qk−2(2q − 1).

Theorem 3.5 (except for the condition (4)) can be generalized as follows.

Theorem 3.9. [14] Let C be an [n, k, d]q code with diversity (Φ0, Φ1), k ≥ 3,
d ≡ −1 (mod q), q odd, whose weights are congruent to 0 or ±1 (mod q). Then
C is extendable if one of the following conditions holds:

(1) Φ0 = θk−3, (2) Φ1 = 0,
(3) Φ0 + Φ1 ≥ θk−2 + αqk−2, (4) αΦ0 + Φ1 ≤ αθk−2,

where θj = (qj+1 − 1)/(q − 1), α = θ1/2.

When (Φ0,Φ1) is none of the types in Theorem 3.9(1), we need more infor-
mation about C.
Theorem 3.10. [14] Let C be an [n, k, d]q code with diversity (Φ0,Φ1), k ≥ 3,
d ≡ −1 (mod q), q odd, whose weights are congruent to 0 or ±1 (mod q). Then
C is not extendable if (Φ0, Φ1) satisfies none of the criteria of Theorem 3.9 and
if

∑

d<i≡d (mod q)

Ai <
(q − 1)2qk−3

2
. (3.1)

As for even q, the following theorem can be proved.

Theorem 3.11. [14] Let C be an [n, k, d]q code with q even, d ≡ −1 (mod q),
whose weights are congruent to 0 or ±1 (mod q), k ≥ 3. Then C is extendable.

Extension theorems can be applied to find new codes from old ones or
to prove the nonexistence of codes with certain parameters. For example, we
demonstrate the nonexistence of [245, 5, 183]4 codes. For a putative [245, 5, 183]4
code C1, considering the residual codes (see Theorem 2.7.1 in [6]) yields that
Ai = 0 for all i 6∈ {0, 183, 184, 196, 228, 244, 245}. Applying Theorem 3.11, C1

is extendable, which contradicts that a [246, 5, 184]4 code does not exist. See
also [15] for the extendability of quaternary linear codes.

Next, we give a typical example one can apply Theorems 3.10 and 3.11. Let
C2 be a [q +1, 3, q− 1]q code, which is MDS (see [6]) and has the unique weight
distribution

01(q − 1)(q+1)q(q−1)/2qq2−1(q + 1)q(q−1)2/2.

So, the weights of C2 are congruent to 0 or ±1 (mod q) and its diversity (θ1, q(q−
1)/2) satisfies none of the conditions of Theorem 3.9. When q is odd, C2 is not
extendable by Theorem 3.10 since the left hand side of (3.1) is 0. This fact is
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known as the completeness of (q + 1)-arcs in PG(2,q) for q odd, see [5]. On the
other hand, it is also known that C2 is extendable when q is even, as guaranteed
by Theorem 3.11. The inequality (3.1) could be slightly improved according to
diversities just as for the case when q = 3 ([12],[13]).

As for other types of 3-weight (mod q) codes, Cheon and Maruta recently
proved the following.

Theorem 3.12. [2] Let C be an [n, k, d]q code with even q ≥ 4, k ≥ 3, whose
weights are congruent to 0,−1 or −2 (mod q) and d ≡ −1 (mod q). Then C is
extendable.

Theorem 3.13. [2] Let C be an [n, k, d]q code with odd q ≥ 5, k ≥ 3, whose
weights are congruent to 0,−1 or −2 (mod q) and d ≡ −1 (mod q). Then C is
extendable if (Φ0, Φ1) 6= (

(
q
2

)
qk−3 + θk−3,

(
q
2

)
qk−3).

Problem 2. Find a new extension theorem for 4-weight (mod q) codes.
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