Extendability of linear codes over \mathbb{F}_q

TATSUYA MARUTA maruta@mi.s.osakafu-u.ac.jp Department of Mathematics and Information Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, JAPAN

Abstract. For an $[n, k, d]_q$ code C, we define a mapping w_C from PG(k - 1, q) to the set of weights of C via a generator matrix of C. We give a geometric aspect derived from w_C to investigate the extendability of linear codes. We survey known extension theorems and some recent results.

1 Introduction

Let \mathbb{F}_q^n denote the vector space of *n*-tuples over \mathbb{F}_q , the field of q elements. A linear code \mathcal{C} of length n, dimension k and minimum (Hamming) distance d over \mathbb{F}_q is referred to as an $[n, k, d]_q$ code. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_q^n$, denoted by $wt(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x} . The weight distribution of \mathcal{C} is the list of numbers A_i which is the number of codewords of \mathcal{C} with weight i. The weight distribution with $(A_0, A_d, \ldots) = (1, \alpha, \ldots)$ is also expressed as $0^1 d^{\alpha} \cdots$. We only consider *non-degenerate* codes having no coordinate which is identically zero.

For an $[n, k, d]_q$ code \mathcal{C} with a generator matrix G, \mathcal{C} is called (l, s)-extendable (to \mathcal{C}') if there exist l vectors $h_1, \ldots, h_l \in \mathbb{F}_q^k$ such that the extended matrix $[G, h_1^{\mathrm{T}}, \cdots, h_l^{\mathrm{T}}]$ generates an $[n+l, k, d+s]_q$ code \mathcal{C}' ([7]). Then \mathcal{C}' is called an (l, s)-extension of \mathcal{C} . A (1, 1)-extendable code is simply called extendable. The following is well-known.

Theorem 1.1. [1] Every $[n, k, d]_2$ code with d odd is extendable.

As for the (l, s)-extendability, the next theorem is known as 'Construction X'.

Theorem 1.2. [1] Let C and C_0 be an $[n, k, d]_q$ code and an $[n, k_0, d_0]_q$ code, respectively, such that $C \supset C_0$ and $d < d_0$. If there exists an $[l, k - k_0, d']_q$ code C', then C is (l, s)-extendable, where $s = \min\{d', d_0 - d\}$.

Proof. We give an elementary proof using generator matrices. Take a generator matrix G of \mathcal{C} with two submatrices G_0 and G_1 so that G_0 consisting of the first k_0 rows of G is a generator matrix of \mathcal{C}_0 and that the remaining $k - k_0$ rows of G form G_1 . Let G' be a generator matrix of \mathcal{C}' . Then, the matrix $\begin{bmatrix} G_0 & O \\ \hline G_1 & G' \end{bmatrix}$ generates an (l, s)-extension of \mathcal{C} , where O is the zero matrix.

For example, every $[n, k, d]_2$ code with odd d contains an $[n, k - 1, d_0]_2$ code with $d_0 > d$ as a subcode. It might be possible to find a suitable subcode C_0 of C when C is a BCH code, but It is not easy to find such a subcode for an arbitrary linear code C in general. We sometimes need to know the minimum lso that C is (l, 1)-extendable.

Problem 1. Find easily checkable conditions to see whether a given $[n, k, d]_q$ code is (l, 1)-extendable or not.

The aim of this paper is to give a geometric aspect to investigate the (l, 1)extendability of linear codes and survey known extension theorems with some
applications mainly for l = 1.

2 A geometric approach

We assume that $k \geq 3$, see [9] for k = 1, 2. Let \mathcal{C} be an $[n, k, d]_q$ code with a generator matrix $G = [g_{ij}] = [g_1, \dots, g_k]^{\mathrm{T}}$. Put $\Sigma = \mathrm{PG}(k-1, q)$, the projective space of dimension k-1 over \mathbb{F}_q . We consider the mapping $w_{\mathcal{C}}$ from Σ to $\{i \mid A_i > 0\}$, the set of weights of \mathcal{C} . For $P = \mathbf{P}(p_1, \dots, p_k) \in \Sigma$ we define the weight of P with respect to \mathcal{C} , denoted by $w_{\mathcal{C}}(P)$, as

$$w_{\mathcal{C}}(P) = |\{j \mid \sum_{i=1}^{k} g_{ij} p_i \neq 0\}| = wt(\sum_{i=1}^{k} p_i g_i).$$

Let $F_d = \{P \in \Sigma \mid w_{\mathcal{C}}(P) = d\}$. Recall that a hyperplane H of Σ is defined by a non-zero vector $h = (h_0, \ldots, h_{k-1}) \in \mathbb{F}_q^k$ as $H = \{P = \mathbf{P}(p_0, \ldots, p_{k-1}) \in \Sigma \mid h_0 p_0 + \cdots + h_{k-1} p_{k-1} = 0\}$. h is called the *defining vector of* H.

Lemma 2.1. C is extendable if and only if there exists a hyperplane H of Σ such that $F_d \cap H = \emptyset$. Moreover, the extended matrix of G by adding the defining vector of H as a column generates an extension of C.

Proof. For an $[n, k, d]_q$ code \mathcal{C} with a generator matrix G, there exists a vector $h = (h_0, \ldots, h_{k-1}) \in \mathbb{F}_q^k$ such that $[G, h^T]$ generates an $[n+1, k, d+1]_q$ code if and only if $\sum_{i=0}^{k-1} h_i p_i \neq 0$ holds for all $P = \mathbf{P}(p_0, \ldots, p_{k-1}) \in F_d$. Equivalently, there exists a hyperplane H with defining vector h such that $F_d \cap H = \emptyset$. \Box

The above lemma can be easily generalized to the (l, 1)-extendability.

Theorem 2.2. C is (l, 1)-extendable if and only if there exist l hyperplanes H_1, \ldots, H_l of Σ such that $F_d \cap H_1 \cap \cdots \cap H_l = \emptyset$. Equivalently, there exists a (k-1-l)-flat Π with $F_d \cap \Pi = \emptyset$.

Maruta

Lemma 2.3. [3] For two linearly independent vectors $a_1, a_2 \in \mathbb{F}_q^n$, it holds that

$$\sum_{\lambda \in \mathbb{F}_q} wt(\boldsymbol{a}_1 + \lambda \boldsymbol{a}_2) + wt(\boldsymbol{a}_2) \equiv 0 \pmod{q}.$$

As a consequence of Lemma 2.3, we get the following.

Lemma 2.4. For a line $L = \{P_0, P_1, \dots, P_q\}$ in Σ , it holds that

$$\sum_{i=0}^{q} w_{\mathcal{C}}(P_i) \equiv 0 \pmod{q}.$$

Now, let

$$F_0 = \{ P \in \Sigma \mid w_{\mathcal{C}}(P) \equiv 0 \pmod{q} \},$$

$$\bar{F}_d = \{ P \in \Sigma \mid w_{\mathcal{C}}(P) \equiv d \pmod{q} \}, \quad F = \Sigma \setminus \bar{F}_d.$$

The mapping $w_{\mathcal{C}}$ is trivial if $F = \emptyset$. For example, $w_{\mathcal{C}}$ is trivial if \mathcal{C} attains the Griesmer bound and if q|d when q is prime [17]. To avoid such cases we assume that gcd(d,q) = 1. Then we have $F_0 \subset F$. If \overline{F}_d contains a line L of Σ , then we have $d \equiv 0 \pmod{q}$ by Lemma 2.4, a contradiction. Hence we get the following.

Lemma 2.5. F forms a blocking set with respect to lines in Σ if gcd(d,q) = 1.

Most of the known extension theorems presented in the next section can be proved by showing that F contains a hyperplane of Σ .

3 Extension theorems and their applications

A q-ary linear code C is w-weight (mod q) if there exists a w-set $W = \{i_1, \ldots, i_w\}$ $\subset \mathbb{Z}_q = \{0, 1, \ldots, q-1\}$ such that $A_i > 0$ implies $i \equiv i_j \pmod{q}$ for some $i_j \in W$. The condition 'd is odd' in Theorem 1.1 would be replaced by 'gcd(d, q) = 1' for general q. But this is not enough for q > 2. In this section, we assume that C is an $[n, k, d]_q$ code with $k \geq 3$ and gcd(d, q) = 1. As a solution of Problem 1, Hill & Lizak showed the following for 2-weight (mod q) codes.

Theorem 3.1. [3],[4] Every $[n, k, d]_q$ code with gcd(d, q) = 1 whose weights (*i*'s such that $A_i > 0$) are congruent to 0 or $d \pmod{q}$ is extendable.

Most of the cases one can apply Theorem 3.1 for q > 3 are when $d \equiv -1 \pmod{q}$.

Corollary 3.2. Every $[n, k, d]_q$ code with $d \equiv -1 \pmod{q}$ whose weights are congruent to 0 or $-1 \pmod{q}$ is extendable.

The following is the first extension theorem for 3-weight (mod q) codes.

Theorem 3.3. [11] Every $[n, k, d]_q$ code with odd $q \ge 5$, $d \equiv -2 \pmod{q}$ whose weights are congruent to 0, -1 or $-2 \pmod{q}$ is extendable.

Throughout this section, we define the *diversity* of \mathcal{C} as the pair (Φ_0, Φ_1) with

$$\Phi_0 = |F_0| = \frac{1}{q-1} \sum_{q|i,i>0} A_i, \quad \Phi_1 = |F \setminus F_0| = \frac{1}{q-1} \sum_{i \neq 0,d \pmod{q}} A_i.$$

Theorem 3.4. [8] Every $[n, k, d]_q$ code with gcd(d, q) = 1 is extendable if

$$\Phi_1 \le q^{k-3}(s(q) - q - 1)/(q - 1)$$

where s(q) is the smallest size of a nontrivial blocking set in PG(2,q).

Theorem 3.5. [12] Let \mathcal{C} be an $[n, k, d]_3$ code with diversity (Φ_0, Φ_1) , gcd(3, d) =1, $k \geq 3$. Then C is extendable if one of the following conditions holds:

- (1) $\Phi_0 = \theta_{k-3}$, (2) $\Phi_1 = 0$, (3) $\Phi_0 + \Phi_1 < \theta_{k-2} + 3^{k-2}$, (4) $\Phi_0 + \Phi_1 \ge \theta_{k-2} + 2 \cdot 3^{k-2}$, (5) $2\Phi_0 + \Phi_1 \le 2\theta_{k-2}$,

where $\theta_j = (3^{j+1} - 1)/2$.

Theorem 3.6. [12] Let C be an $[n, k, d]_3$ code with diversity $(\Phi_0, \Phi_1), d \equiv 1$ (mod 3), $k \geq 3$. Then \mathcal{C} is (2,2)-extendable if

$$(\Phi_0, \Phi_1) \in \{(\theta_{k-2}, 0), (\theta_{k-3}, 2 \cdot 3^{k-2}), (\theta_{k-2} + 3^{k-2}, 3^{k-2})\}.$$

The condition (3) of Theorem 3.5 is generalized for other q as follows.

Theorem 3.7. [10] Let \mathcal{C} be an $[n, k, d]_q$ code with gcd(d, q) = 1, $q = p^h$, p prime. Then C is extendable if

$$\sum_{i \not\equiv d \pmod{p}} A_i < q^{k-2}(2q-1)$$

and if one of the following conditions holds:

- (1) h = 1 (*i.e. q is prime*),
- (2) q = 4,

(3) h = 2 with $n \equiv 0 \pmod{p}$, $d \equiv -1 \pmod{p}$,

(4) h = 2 with $n \equiv d \equiv 1 \pmod{p}$ and $A_i = 0$ for all $i \equiv d \pmod{p}$ with $i \not\equiv n \pmod{q}$.

Theorem 3.7 for q = 4 was first found by Simonis [16]. When $h \ge 3$, the following result is known.

206

Maruta

Theorem 3.8. [10] Let \mathcal{C} be an $[n, k, d]_q$ code with gcd(d, q) = 1, $q = p^h$, p prime, $h \geq 3$. Then C is extendable if

$$\sum_{i \not\equiv d \pmod{p^{h-1}}} A_i < q^{k-2}(2q-1)$$

Theorem 3.5 (except for the condition (4)) can be generalized as follows.

Theorem 3.9. [14] Let C be an $[n, k, d]_q$ code with diversity $(\Phi_0, \Phi_1), k \geq 3$, $d \equiv -1 \pmod{q}$, q odd, whose weights are congruent to 0 or $\pm 1 \pmod{q}$. Then \mathcal{C} is extendable if one of the following conditions holds:

(1) $\Phi_0 = \theta_{k-3}$, (2) $\Phi_1 = 0$, (3) $\Phi_0 + \Phi_1 \ge \theta_{k-2} + \alpha q^{k-2}$, (4) $\alpha \Phi_0 + \Phi_1 \le \alpha \theta_{k-2}$,

where $\theta_i = (q^{j+1} - 1)/(q - 1), \ \alpha = \theta_1/2.$

When (Φ_0, Φ_1) is none of the types in Theorem 3.9(1), we need more information about \mathcal{C} .

Theorem 3.10. [14] Let C be an $[n, k, d]_q$ code with diversity $(\Phi_0, \Phi_1), k \geq 3$, $d \equiv -1 \pmod{q}$, q odd, whose weights are congruent to 0 or $\pm 1 \pmod{q}$. Then \mathcal{C} is not extendable if (Φ_0, Φ_1) satisfies none of the criteria of Theorem 3.9 and if

$$\sum_{\substack{\langle i \equiv d \pmod{q}}} A_i < \frac{(q-1)^2 q^{k-3}}{2}.$$
(3.1)

As for even q, the following theorem can be proved.

d

Theorem 3.11. [14] Let \mathcal{C} be an $[n, k, d]_q$ code with q even, $d \equiv -1 \pmod{q}$, whose weights are congruent to 0 or $\pm 1 \pmod{q}$, $k \geq 3$. Then \mathcal{C} is extendable.

Extension theorems can be applied to find new codes from old ones or to prove the nonexistence of codes with certain parameters. For example, we demonstrate the nonexistence of $[245, 5, 183]_4$ codes. For a putative $[245, 5, 183]_4$ code C_1 , considering the residual codes (see Theorem 2.7.1 in [6]) yields that $A_i = 0$ for all $i \notin \{0, 183, 184, 196, 228, 244, 245\}$. Applying Theorem 3.11, C_1 is extendable, which contradicts that a $[246, 5, 184]_4$ code does not exist. See also [15] for the extendability of quaternary linear codes.

Next, we give a typical example one can apply Theorems 3.10 and 3.11. Let \mathcal{C}_2 be a $[q+1, 3, q-1]_q$ code, which is MDS (see [6]) and has the unique weight distribution

$$0^{1}(q-1)^{(q+1)q(q-1)/2}q^{q^{2}-1}(q+1)^{q(q-1)^{2}/2}.$$

So, the weights of \mathcal{C}_2 are congruent to 0 or $\pm 1 \pmod{q}$ and its diversity $(\theta_1, q(q - q))$ 1)/2 satisfies none of the conditions of Theorem 3.9. When q is odd, C_2 is not extendable by Theorem 3.10 since the left hand side of (3.1) is 0. This fact is known as the completeness of (q + 1)-arcs in PG(2,q) for q odd, see [5]. On the other hand, it is also known that C_2 is extendable when q is even, as guaranteed by Theorem 3.11. The inequality (3.1) could be slightly improved according to diversities just as for the case when q = 3 ([12],[13]).

As for other types of 3-weight (mod q) codes, Cheon and Maruta recently proved the following.

Theorem 3.12. [2] Let C be an $[n, k, d]_q$ code with even $q \ge 4$, $k \ge 3$, whose weights are congruent to 0, -1 or $-2 \pmod{q}$ and $d \equiv -1 \pmod{q}$. Then C is extendable.

Theorem 3.13. [2] Let C be an $[n, k, d]_q$ code with odd $q \ge 5$, $k \ge 3$, whose weights are congruent to 0, -1 or $-2 \pmod{q}$ and $d \equiv -1 \pmod{q}$. Then C is extendable if $(\Phi_0, \Phi_1) \neq (\binom{q}{2}q^{k-3} + \theta_{k-3}, \binom{q}{2}q^{k-3})$.

Problem 2. Find a new extension theorem for 4-weight (mod q) codes.

References

- [1] J. Bierbrauer, Introduction to Coding Theory, Chapman & Hall/CRC, 2005.
- [2] E.J. Cheon, T. Maruta, A new extension theorem for 3-weight modulo q linear codes over \mathbb{F}_q , in preparation.
- [3] R. Hill, An extension theorem for linear codes, Des. Codes Crypt. 17, 1999, 151-157.
- [4] R. Hill, P. Lizak, Extensions of linear codes, Proc. IEEE Intern. Symp. Inform. Theory, Whistler, Canada, 1995.
- [5] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, 2nd ed., Clarendon Press, Oxford, 1998.
- [6] W. C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
- [7] A. Kohnert, (l, s)-extension of linear codes, *Discr. Math.*, to appear.
- [8] I. Landjev, A. Rousseva, An extension theorem for arcs and linear codes, Probl. Inform. Transm. 42, 2006, 319-329.
- [9] T. Maruta, On the extendability of linear codes, *Fin. Fields Their Appl.* 7, 2001, 350-354.
- [10] T. Maruta, Extendability of linear codes over GF(q) with minimum distance d, gcd(d,q) = 1, *Discr. Math.* 266, 2003, 377-385.

Maruta

- [11] T. Maruta, A new extension theorem for linear codes, Fin. Fields Their Appl. 10, 2004, 674-685.
- [12] T. Maruta, Extendability of ternary linear codes, Des. Codes Crypt. 35, 2005, 175-190.
- [13] T. Maruta, K. Okamoto, Some improvements to the extendability of ternary linear codes, *Fin. Fields Their Appl.* 13, 2007, 259-280.
- [14] T. Maruta, K. Okamoto, Extendability of 3-weight (mod q) linear codes over \mathbb{F}_q , submitted.
- [15] T. Maruta, M. Takeda, K. Kawakami, New sufficient conditions for the extendability of quaternary linear codes, *Fin. Fields Their Appl.*, to appear.
- [16] J. Simonis, Adding a parity check bit, IEEE Trans. Inform. Theory 46, 2000, 1544-1545.
- [17] H.N. Ward, Divisibility of codes meeting the Griesmer bound, —it J. Combin. Theory Ser. A 83, 1998, 79-93.