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Abstract. For an [n, k,d]q code C, we define a mapping we from PG(k — 1,q) to
the set of weights of C via a generator matrix of C. We give a geometric aspect
derived from we to investigate the extendability of linear codes. We survey known
extension theorems and some recent results.

1 Introduction

Let [ denote the vector space of n-tuples over Fy, the field of ¢ elements. A
linear code C of length n, dimension k£ and minimum (Hamming) distance d over
[F, is referred to as an [n, k,d], code. The weight of a vector x € FZL, denoted
by wt(x), is the number of nonzero coordinate positions in &. The weight
distribution of C is the list of numbers A; which is the number of codewords
of C with weight i. The weight distribution with (Ao, 44,...) = (1,@,...) is
also expressed as 0'd®---. We only consider non-degenerate codes having no
coordinate which is identically zero.

For an [n, k, d]4 code C with a generator matrix G, C is called (I, s)-extendable
(to C') if there exist | vectors hi,...,h; € F’; such that the extended matrix
[G,hT, -, hl] generates an [n+ 1, k,d + s]; code C’ ([7]). Then C' is called an
(1, s)-extension of C. A (1, 1)-extendable code is simply called extendable. The
following is well-known.

Theorem 1.1. [1] Every [n, k,d]2 code with d odd is extendable.

As for the (I, s)-extendability, the next theorem is known as ‘Construction
X'

Theorem 1.2. [1] Let C and Cy be an [n,k,d]; code and an [n,ko,dplq code,
respectively, such that C D Cy and d < dy. If there exists an [,k — ko, d'|4 code
C', then C is (1, s)-extendable, where s = min{d',dy — d}.

Proof. We give an elementary proof using generator matrices. Take a generator
matrix G of C with two submatrices Gy and GG1 so that G consisting of the first
ko rows of G is a generator matrix of Cy and that the remaining k — kg rows of
Gp | O
G| G ]
generates an (I, s)-extension of C, where O is the zero matrix. O

G form Gi. Let G’ be a generator matrix of C’. Then, the matrix {
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For example, every [n, k, d]2 code with odd d contains an [n, k — 1, dgl2 code
with dg > d as a subcode. It might be possible to find a suitable subcode Cy
of C when C is a BCH code, but It is not easy to find such a subcode for an
arbitrary linear code C in general. We sometimes need to know the minimum [
so that C is (I, 1)-extendable.

Problem 1. Find easily checkable conditions to see whether a given [n, k, d,
code is (I, 1)-extendable or not.

The aim of this paper is to give a geometric aspect to investigate the (I, 1)-
extendability of linear codes and survey known extension theorems with some
applications mainly for [ = 1.

2 A geometric approach

We assume that k& > 3, see [9] for k = 1,2. Let C be an [n, k, d]; code with a
generator matrix G = [g;;] = [g1, -+, gk]T. Put ¥ =PG(k—1,q), the projective
space of dimension k& — 1 over F,. We consider the mapping w¢ from ¥ to
{i | A; > 0}, the set of weights of C. For P = P(p1,...,pr) € ¥ we define the
weight of P with respect to C, denoted by we(P), as

k k
we(P) =147 | Y gipi # 0} = wt(Y_ pigi)-
i=1 i=1

Let Fy ={P € ¥ | we(P) = d}. Recall that a hyperplane H of ¥ is defined
by a non-zero vector h = (hg,...,hx_1) € FI(; as H={P =P(po,...,px-1) €
Y | hopo + -+ + hg—1pk—1 = 0}. h is called the defining vector of H.

Lemma 2.1. C is extendable if and only if there exists a hyperplane H of
such that FyNH = (). Moreover, the extended matriz of G by adding the defining
vector of H as a column generates an extension of C.

Proof. For an [n, k,d], code C with a generator matrix G, there exists a vector
h = (ho,...,hix—1) € ]FZ’ such that [G,h™] generates an [n + 1,k,d + 1], code if

and only if Zi':ol hip; # 0 holds for all P = P(po,...,pr—1) € F4. Equivalently,
there exists a hyperplane H with defining vector h such that Fy;NH = (. O

The above lemma can be easily generalized to the (I, 1)-extendability.

Theorem 2.2. C is (I,1)-extendable if and only if there exist | hyperplanes
Hy,...,H; of ¥ such that F;NHyN---N H = (. Equivalently, there exists a
(k—1—=1)-flat TT with Fy; N1 = (.
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Lemma 2.3. [3] For two linearly independent vectors a1, as € IFZL, 1t holds that

Z wt(ay + Aag) + wt(az) =0 (mod q).
relF,

As a consequence of Lemma 2.3, we get the following.
Lemma 2.4. For a line L = {Py, P1,---, P} in X, it holds that

q

S we(P) =0 (mod q).

i=0
Now, let

Fy = {Pe¥|we(P)=0 (mod q)},
Fg = {PeX|we(P)=d (modgq)}, F=X\F,

The mapping we is trivial if F = (). For example, we is trivial if C attains
the Griesmer bound and if g|d when ¢ is prime [17]. To avoid such cases we
assume that ged(d, q) = 1. Then we have Fy C F. If F; contains a line L of X,
then we have d =0 (mod ¢) by Lemma 2.4, a contradiction. Hence we get the
following.

Lemma 2.5. F forms a blocking set with respect to lines in ¥ if ged(d,q) = 1.

Most of the known extension theorems presented in the next section can be
proved by showing that F' contains a hyperplane of X.

3 Extension theorems and their applications

A g-ary linear code C is w-weight (mod q) if there exists a w-set W = {i1, ..., iy}
C Zg=1{0,1,...,q—1} such that A; > 0 implies i = i; (mod ¢) for some i; € W.
The condition ‘d is odd’ in Theorem 1.1 would be replaced by ‘ged(d, q) = 1’
for general q. But this is not enough for ¢ > 2. In this section, we assume that
C is an [n, k,d]q code with £ > 3 and gecd(d,¢) = 1. As a solution of Problem
1, Hill & Lizak showed the following for 2-weight (mod ¢) codes.

Theorem 3.1. [3],[4] Every [n, k,d], code with ged(d, q) = 1 whose weights (i’s
such that A; > 0) are congruent to 0 or d (mod q) is extendable.

Most of the cases one can apply Theorem 3.1 for ¢ > 3 are when d = —1
(mod q).

Corollary 3.2. Every [n,k,d]; code with d = —1 (mod q) whose weights are
congruent to 0 or —1 (mod q) is extendable.
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The following is the first extension theorem for 3-weight (mod ¢) codes.

Theorem 3.3. [11] Every [n, k, d], code with odd ¢ > 5, d = —2 (mod ¢) whose
weights are congruent to 0, —1 or —2 (mod q) is extendable.

Throughout this section, we define the diversity of C as the pair (®g, ®;)
with

1 1
By = [Fo| = — > A Oy = |F\ Fy| = — > A
q qli,i>0 q i#0,d (mod q)

Theorem 3.4. [8] Every [n, k,d]; code with gcd(d,q) =1 is extendable if

®1 < ¢ (s(e) —a—1)/(¢ 1)
where s(q) is the smallest size of a nontrivial blocking set in PG(2,q).

Theorem 3.5. [12] Let C be an [n, k, d]3 code with diversity (®o, P1), ged(3,d) =
1, k> 3. Then C is extendable if one of the following conditions holds:

(1) ®g =0_3, (2) 1 =0, (3) g+ Py < Op_o + 3772,

(4) Do+ Py > 050 +2-352 (5) 2By + Oy < 20;_o,

where 0; = (3971 —1)/2.

Theorem 3.6. [12] Let C be an [n,k,d|3 code with diversity (®g, ®1), d = 1
(mod 3), k > 3. Then C is (2,2)-extendable if

(‘1)07 ¢)1> S {(ek—% 0)7 (076_31 2 3k_2)7 (Qk—Q + 3k_2a 3k_2)}.
The condition (3) of Theorem 3.5 is generalized for other ¢ as follows.

Theorem 3.7. [10] Let C be an [n,k,d], code with ged(d,q) = 1, ¢ = p", p
prime. Then C is extendable if

> Ai<dP(2q-1)

iZd(mod p)

and if one of the following conditions holds:

(1) h =1 (i.e. q is prime),

(2) 7= 4,

(3) h=2 withn=0 (mod p), d=—1 (mod p),

(4) h =2 withn=d=1 (mod p) and A; =0 for all i = d (mod p) with

i #n (mod q).

Theorem 3.7 for ¢ = 4 was first found by Simonis [16]. When h > 3, the
following result is known.
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Theorem 3.8. [10] Let C be an [n,k,d], code with ged(d,q) = 1, ¢ = p", p
prime, h > 3. Then C is extendable if

Y A< 1),

iZd(mod ph—1)

Theorem 3.5 (except for the condition (4)) can be generalized as follows.

Theorem 3.9. [14] Let C be an [n,k,d], code with diversity (®o,®1), k > 3,
= —1 (mod q), q odd, whose weights are congruent to 0 or £1 (mod q). Then
C is extendable if one of the following conditions holds:
(1) o = Oh_s,  (2) B3 =0,
(3) @9+ P1 > 0o+ ag" 2, (4) a®o+ P1 < aby_o,

where 0; = (¢ —1)/(q¢ — 1), o= 61/2.

When (g, ®1) is none of the types in Theorem 3.9(1), we need more infor-
mation about C.

Theorem 3.10. [14] Let C be an [n,k,d], code with diversity (®o, 1), k > 3,
= —1 (mod q), q odd, whose weights are congruent to 0 or +£1 (mod q). Then
C is not extendable if (Po, P1) satisfies none of the criteria of Theorem 3.9 and

if
Yoo A< (=1 (3.1)

. 2
d<i=d (mod q)
As for even ¢, the following theorem can be proved.

Theorem 3.11. [14] Let C be an [n,k,d], code with q even, d = —1 (mod q),
whose weights are congruent to 0 or =1 (mod q), k > 3. Then C is extendable.

Extension theorems can be applied to find new codes from old ones or
to prove the nonexistence of codes with certain parameters. For example, we
demonstrate the nonexistence of [245, 5, 183]4 codes. For a putative [245, 5, 183]4
code Cy, considering the residual codes (see Theorem 2.7.1 in [6]) yields that
A; = 0 for all ¢ ¢ {0,183,184,196,228,244,245}. Applying Theorem 3.11, C;
is extendable, which contradicts that a [246,5,184]4 code does not exist. See
also [15] for the extendability of quaternary linear codes.

Next, we give a typical example one can apply Theorems 3.10 and 3.11. Let
Cy be a [g+1,3,q— 1], code, which is MDS (see [6]) and has the unique weight

distribution , )
0'(q — 1)latDala=1/2¢a" =14 4 1)ala=1)"/2,

So, the weights of Cy are congruent to 0 or £1 (mod ¢) and its diversity (61, q(q¢—
1)/2) satisfies none of the conditions of Theorem 3.9. When ¢ is odd, Cy is not
extendable by Theorem 3.10 since the left hand side of (3.1) is 0. This fact is
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known as the completeness of (¢ + 1)-arcs in PG(2,q) for ¢ odd, see [5]. On the
other hand, it is also known that Cs is extendable when ¢ is even, as guaranteed
by Theorem 3.11. The inequality (3.1) could be slightly improved according to
diversities just as for the case when ¢ = 3 ([12],[13]).

As for other types of 3-weight (mod ¢) codes, Cheon and Maruta recently
proved the following.

Theorem 3.12. [2] Let C be an [n,k,d],; code with even ¢ > 4, k > 3, whose
weights are congruent to 0,—1 or —2 (mod ¢) and d = —1 (mod q). Then C is
extendable.

Theorem 3.13. [2] Let C be an [n,k,d|,; code with odd ¢ > 5, k > 3, whose
weights are congruent to 0, —1 or —2 (mod ¢q) and d = —1 (mod q). Then C is

extendable if (9o, P1) # ((g) q" 3 + 0y s, (3) 7" 3).

Problem 2. Find a new extension theorem for 4-weight (mod ¢) codes.
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