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Abstract. We study properties of rank metric and codes in rank metric over finite
fields. We show that perfect codes do not exist. We derive an equivalent of the
Varshamov-Gilbert bound in Hamming metric. We study the asymptotic behavior
of the minimum rank distance of codes that are on GV. We show that the packing
density of maximum rank distance codes is lower bounded by a function depending
on the error-correcting capability. We show that there are asymptotically perfect
codes correcting errors of rank 1 over fields of characteristic 2.

1 Introduction

Apart from cryptographic applications and applications in tape recording, rank
metric found recently many more applications in the field of random network
coding and construction of optimal rate-diversity tradeoff space-time codes.

In this paper, we first recall properties of rank metric and existing bounds.
We show that perfect codes cannot exist in rank metric. Then we exhibit an
asymptotic relation between parameters of a code which is said to be on GV,
that is, which satisfies the Varshamov-Gilbert bound in rank metric.

We also study codes which reach the Singleton bound. These codes are called
MRD-codes for Maximum Rank Distance codes. After recalling the formula
given by Gabidulin on the rank distribution of linear MRD-codes, we present
some simulations showing that rank distribution of random codes and of MRD-
codes is very similar. In addition, we prove that the density of correctable errors
for MRD-codes corresponding to codes formed with square matrices is lower
bounded by a function depending only on the error-correcting capability of the
code. In the special case of fields of characteristic 2, we show that we can
construct a family of codes over fields of characteristic 2 that is asymptotically
perfect.

2 Properties of rank metric

Let q be a power of a prime and let b = (β1, . . . , βn) be a basis of GF (qm)
over GF (q). The integer n denotes the length of the code. The rank norm over
GF (q) of an element of GF (qm)n is defined by
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Definition 1 ([1]) Let x = (x1, . . . , xn) ∈ GF (qm)n. The rank of x on GF (q),
is the rank of matrix

X =




x11 · · · x1n
...

. . .
...

xm1 · · · xmn


 ,

where xj =
∑n

i=1 xijβi. It is denoted by Rk(x)

Rank metric is the metric over GF (qm)n induced by the rank norm. Spheres
and balls in rank metric have the following expression:

• Sphere of radius t ≥ 0: St
def
= {y ∈ GF (qm)n | Rk(y) = t}

• Ball of radius t ≥ 0: Bt
def
= ∪t

i=0Si

We have the following bounds:
{

q(m+n−2)t−t2 ≤ St ≤ q(m+n+1)t−t2

q(m+n−2)t−t2 ≤ Bt ≤ q(m+n+1)t−t2+1 (2.1)

Let C ⊂ GF (qm)n for m and n non-zero integers. If M denotes the cardi-
nality of C and d

def
= minc1 6=c2∈C(Rk(c1− c2)) we say that C is a (n, M, d)r code

over GF (qm). The integer d is called the minimum rank distance of C.

3 Upper bounds and perfect codes

In this section we recall a Singleton-like bound for rank metric codes and state
an equivalent to the sphere-packing bound. We show that there are no perfect
codes in rank metric.

Proposition 1 Let C be a (n,M, d)r code over GF (qm). We have

• Singleton-like bound: M ≤ qmin (m(n−d+1),n(m−d+1)).

• Sphere packing-like bound: If t = b(d− 1)/2c, then
M × Bt ≤ qmn, (3.2)

For the proof of Singleton-like bound see [1, 6]. The proof of the sphere-
packing bound comes from the fact that, for rank metric, two balls of radius
t = b(d− 1)/2c centered on codewords do not intersect. Thus, the full packing
has size less than the whole space. The proof is similar to that of Hamming
metric.
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If we define perfect codes as usual, that is: an (n,M, d)r-code over GF (qm)
is perfect if and only if M×Bt = qmn, we can investigate the existence of perfect
codes. The following proposition answers the question

Proposition 2 There are no perfect codes in rank metric.

Proof. The proof can be derived from the bounds (2.1)

4 A Varshamov–Gilbert like bound

In rank metric the equivalent of Varshamov–Gilbert (GV) bound is given by the
following result:

Proposition 3 Let m,n, M, d be positive integers. If

M × Bd−1 < qmn, (4.3)

then there exists a (n,M + 1, d)r-code over GF (qm).

From this result we define the property for some code to be on GV:

Definition 2 An (n, M, d)r-code is said to be on GV if

(M − 1)× Bd−1 < qmn ≤ M × Bd−1, (4.4)

Now we proove the following result given the relations between the param-
eters of a (n,M, d)r, which is on GV and whose cardinality is not too small.

Proposition 4 Consider an (n,M, d)r-code C over GF (qm) where m = m(n) ≥
n. Then, if C is on GV we have

d

m + n

n→+∞∼ 1
2
−

√
logq M

m + n

√
1 +

(m− n)2

4 logq M
,

provided logq M = λ(n)m, where λ(n) = o(n) tends to +∞ with n.

Proof. By taking the base q logarithm of the inequalities (2.1), we obtain from
property (4.4) that

{
mn ≤ (m + n + 1)(d− 1)− (d− 1)2 + 1 + logq M,

logq(M − 1) + (m + n− 2)(d− 1)− (d− 1)2 < mn.
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Since M ≥ 2 we have further that logq(M−1) ≥ logq(M)− logq(2) ≥ logq(M)−
1. Hence the minimum distance of the code must satisfy

{
0 ≤ −d2 + (m + n + 3)d + logq M −mn− (m + n + 1),
0 ≥ −d2 + (m + n)d + logq M −mn− (m + n).

The inequalities are given by second order equations whose discriminant are
respectively

∆1 = (m− n)2 + 4 logq(M) + 2(m + n) + 5,
∆2 = (m− n)2 + 4 logq(M)− 4(m + n).

Therefore the minimum distance of a code on GV satisfies the inequalities

1
2
− −√∆1 + 3

2(m + n)
≤ d

m + n
≤ 1

2
−

√
∆2

2(m + n)
.

Under the conditions of the theorem (logq M = λ(n)(m+n), where λ(n) = o(n)
and tends to infinity with n), it is not very difficult to complete the proof of the
proposition. ¥

Example 1 A special case is when m = n and for a family of constant rate
codes 0 < R < 1 that is

logq M = n2R.

In that case we have
d

n
∼ 1−

√
R.

This result implies that the ratio of the minimum rank distance on the length of
the code is asymptotically constant.

5 Maximum rank distance codes

Singleton inequality gives an upper bound on the cardinality of codes with given
parameters. We call optimal codes or MRD (Maximum Rank Distance) codes,
codes attaining the Singleton bound

Definition 3 (MRD-codes – [1]) A (n,M, d)r-code over GF (qm) is called
MRD if

• M = qm(n−d+1), if n ≤ m.

• M = qm(n−d+1), if n > m

We study properties of MRD codes such as the distribution of the rank of
codewords as well as bounds on their packing density.
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5.1 Rank weight distribution of MRD-codes

In Hamming metric, the weight distribution of MDS-codes is well-known [5].
Gabidulin showed the rank distribution of codes in rank metric can be expressed
by

Proposition 5 ([1]) Let As(n, d) be the number of rank s codewords of an
MRD-code over GF (qm). Then

Ad+`(n, d) =
[

n
d + `

]

q

∑̀

t=0

(−1)t+`

[
d + `
` + t

]

q

q(
`−t
2 )

(
qm(t+1) − 1

)
, (5.5)

where
[

n
i

]

q

is the Gaussian binomial.

Our contribution to this section comes from the simulations we made to
evaluate the randomness degree of MRD-codes. By using these simulations we
obtained that the rank distribution of random GF (q)-linear codes in rank metric
was almost identical to the weight distribution of linear MRD-codes. Results are
presented in table 5.1. The table gives the base 2 logarithm of the proportion
Ai(n, d)/2mn for n = 32, m ≥ 32. The left-most curve corresponds to m = 32,
the right-most to m = 40. We made simulations for random GF (q)-linear codes
as well as for MRD-codes sufficiently large with the same parameters. For ranks
significantly greater than the minimum rank distance both curves coincide very
accurately.

5.2 Packing density of MRD codes

In section 3 we proved that no perfect codes existed in rank metric. However a
natural question can be: what is the defect of perfectitude of MRD-codes, that
is, given an (n,M, d)r MRD-code what is the volume of the space covered by
balls of radius b(d − 1)/2c compared to the volume of the whole space. The
packing density of the code is thus defined by

D =
MBt

qmn
,

where t = b(d − 1)/2c is the rank error-correcting capability of the code. By
using the bounds (2.1), we prove

Proposition 6 (Packing density of MRD-codes) Let C be a MRD-code,
(n, qm(n−2t), 2t + 1)r over GF (qm). The packing density of C satisfies

1
q(m−n+2)t+t2

≤ D ≤ 1
q(m−n−1)t+t2

,
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Table 1: Base 2 logarithm of proportion of words of given rank in an MRD-codes
of length n = 32 over GF (2m), where m = 32, 33, 35, 40.

This proposition shows that, whenever the length of the code equals the exten-
sion degree, i.e. n = m, and if n tends to ∞, then the packing density is lower
bounded by q−t2−2t, which depends only on the rank error-correcting capability
of the code.

Particular case of rank 1 correcting MRD codes For rank 1 MRD codes
where m = n, we can express the exact formulas and obtain

Proposition 7 An (n, qn−2, 3)r MRD-code over GF (qn) has a packing density
equal to

D =
1− 2q−n + q−2n+1

q − 1
. (5.6)

There is a special interest in the binary case. In section 3, we showed that
there are no perfect codes in rank metric. However from previous proposition
wd have



198 ACCT2008

Corollary 1 Let F = {Ci}i≥2 be a family of (i, 2i−2, 3)r MRD-codes over GF (2i).
If Di is the packing density of code Ci then

lim
i→∞

Di = 1.

This means that F is a sequence of codes with increasing length and alphabet
that are asymptotically perfect. Since Gabidulin codes are MRD codes we can
construct such families of codes.
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