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Abstract. We extend the study of steganography schemes with pooling to the case
when two changes per cell are allowed. We show that such schemes are equivalent to
a new, symmetric version of sum covers known in combinatorial design theory. We
give a construction that is better in the information versus distortion metric than
the schemes with one change per cell. A number of interesting questions concerning
the underlying sum cover sets remain open.

1 Steganography background

Steganography is the science of information hiding. The sender starts with a
cover object, such as for example a digital multimedia file, and (s)he embeds
a hidden message into the cover object by slightly distorting it in a way that
enables the intended recipient to retrieve the hidden message from the distorted
cover object; at the same time the very existence of the hidden message should
be impossible to detect by any third party.

Typically the cover object is a sequence of elements of D, where D =
{0, . . . ,m− 1}, m = 2e. In current applications we usually have e ∈ {8, 12, 16}.
For example, e = 8 for grayscale digital images and e = 16 for CD quality
audio.

Let S denote the set of message symbols. A message to be communicated by
the sender to the recipient is a string of elements of S. In most steganographic
schemes, the sender and the recipient agree on a symbol-assignment function

s : D → S. (1)

To embed a given message symbol z ∈ S in a given element x ∈ D, the sender
modifies x to x′ so that s(x′) = z and |x− x′|, the amplitude of the embedding
change, is as small as possible.

One of the goals of Steganography is to design schemes with high embedding
efficiency, which can be broadly defined as the ratio between the amount of the
communicated information (information rate) and the amount of introduced
distortion (distortion rate) [3, 4].

The embedding efficiency can be increased by applying covering codes, and
we recommend [1] or [5] for an introduction to this topic. In order to achieve a
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desired information rate (or a desired distortion rate), one can use direct sums
of covering codes.

It has been established in the steganography literature that the impact of
embedding becomes statistically detectable rather quickly with the increasing
amplitude of embedding changes. Thus, from now on we limit ourselves to
so-called ±1 embedding changes in which the sender modifies each element of
D by at most one, which is the smallest possible modification. Hence we will
be measuring the total amount of distortion simply by counting the number of
embedding changes.

We note that a problem will arise in the rare case when the sender is required
to apply the +1 change to the value m− 1 ∈ D or the −1 change to the value
0 ∈ D. Then the sender can choose a different cover object (or the sender can
perform a change of a magnitude greater than 1 to achieve the same effect). If
we neglect these rare events, then we can assume that D = Z, which makes our
algebraic treatment easier.

Let Zn = Z/(n) denote the integers modulo n. A concrete example of a
symbol-assignment function (1) that requires only ±1 embedding changes is
given by S = Z3 and s(x) = x mod 3. This function has a better embedding
efficiency than the notorious “least significant bit embedding” defined by s(x) =
x mod 2.

1.1 Schemes with pooling

In [3] we proved that the embedding efficiency can be increased by pooling
the elements of D. We partition the cover object into disjoint segments, each
of which consists of d elements of D. That is, we partition the cover object
into elements of Dd, which we will call cells. The details of partitioning into
cells are immaterial for our study. For example, the cells can be formed by
adjacent elements along some pseudo-random path through the cover object.
This pseudo-random path can be generated by the sender and by the recipient
from a shared secret seed.

In contrast to (1), the symbol-assignment function will now be a mapping

s : Dd → S. (2)

The information rate achieved by s in (2) is d−1 log2 |S| bits per element of the
cover object. Therefore, given the cell dimension d and the maximum number
c of changes allowed per cell, we wish to maximize |S|. The upper bound on
|S| is

Ud,c :=
c∑

i=0

(
d

i

)
2i
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since s must be surjective.
One example of a function of the type (2) is given by taking S = Z2d+1 and

s(x1, . . . , xd) :=

(
d∑

i=1

ixi

)
mod (2d + 1). (3)

In order to embed any symbol u′ ∈ Z2d+1 into any cell x ∈ Dd using (3), at
most one ±1-change is required. This can be seen as follows: Let (ei) denote
the standard basis of Zd, and assume s(x) = u. Let δ = u′ − u. If δ = 0,
then no change is performed. Otherwise let δ = εkk with εk ∈ {−1, 1} and
k ∈ {1, 2, . . . , d}. We modify x to x′ = x + εkek; indeed s(x′) = u′. Note that
the embedding defined by (3) is optimal if at most one ±1-change per cell is
allowed, since |Z2d+1| = 2d + 1 = Ud,1.

We finish this introductory section by an informal sketch of the main result
of [3]. Suppose that 2d + 1 is a prime power. Let the embedding scheme
Σ1 be defined by the symbol-assignment function (3) and using (2d + 1)-ary
Hamming codes as covering codes (see the note about covering codes above).
Let the embedding scheme Σ2 be defined by the symbol-assignment function
x 7→ x mod 3 and using ternary Hamming codes as covering codes to achieve
the same distortion rate as Σ1. Then the information rate of Σ1 is never worse
than the information rate of Σ2. The precise statement with proofs can be
found in [3].

2 Schemes with two changes per cell

The present paper is concerned with the embedding schemes that allow at most
two ±1-changes per cell. We will continue to use the definitions and notation
introduced in Section 1. We start by presenting the mathematical background.

Let R be a ring, C ⊆ R, u ∈ R. We define

C + C = {x + y : x, y ∈ C, x 6= y} (4)

and further let −C = {−x : x ∈ C} and C − u = {x− u : x ∈ C}. We say that
A,B ⊂ R are shift equivalent if there exists a v ∈ R such that A = B − v.

Definition 1. A subset S ⊆ Zn is called a strict sum cover of Zn, abbreviated
SSC(n), if S + S = Zn.

The adjective strict emphasizes the condition x 6= y in (4). Many papers
(e.g. [6, 7]) consider sumsets both with and without this distinctness condition,
hence we feel the need to emphasize the choice made in our definition.



Lisoněk 189

Definition 2. A subset S ⊆ Zn is called symmetric if 0 ∈ S and −S = S.
A subset S ⊆ Zn is called a symmetric strict sum cover of Zn, abbreviated
SSSC(n), if S is symmetric and S is an SSC(n).

Lemma 3. If A = {0,±a1, . . . ,±ad} is an SSSC(n), then

s(x1, . . . , xd) =

(
d∑

i=1

aixi

)
mod n

is a symbol-assignment function that allows the sender to embed any symbol in
Zn into any cell in Zd by at most two ±1-changes.

The proof is a straightforward extension of the argument for the case of one
±1-change that was given near the end of Section 1. Note the importance of the
condition x 6= y in (4); without imposing this condition it could happen that
we require one change of amplitude 2. However, per the discussion in Section 1,
two changes of amplitude 1 are preferable to one change of amplitude 2.

Lemma 3 makes our objective fairly obvious: Given d, we wish to maximize
n such that an SSSC(n) with 2d + 1 elements exists.

Definition 4. For a positive integer k we denote by nγ(k) the largest n such
that an SSC(n) of cardinality k exists. For an odd positive integer k we denote
by n̂γ(k) the largest n such that an SSSC(n) of cardinality k exists.

The notation nγ(k) was introduced in the influential paper by Graham and
Sloane [6]. To the best of our knowledge the SSSC(n) have not been studied in
the literature; hence the notation n̂γ(k) is new.

Clearly for all odd k we have n̂γ(k) ≤ nγ(k).

Proposition 5. For 3 ≤ k ≤ 13, k odd, we have n̂γ(k) = nγ(k).

Proof. The values nγ(k) for k ≤ 14 are determined in [7]; they are tabulated in
the last row of Table 1 therein. The corresponding SSC(nγ(k)) are tabulated in
Table 4 of that paper. We will now show that for odd k ∈ [3, 13], each optimal
strict sum cover given in [7] is shift equivalent to a symmetric set:
k = 3, C = {0, 1, 2} ⊂ Z3, C = {0,±1} ⊂ Z3

k = 5, C = {0, 1, 2, 3, 6} ⊂ Z9, C − 6 = {0,±3,±4} ⊂ Z9

k = 7, C = {0, 1, 2, 3, 4, 8, 13} ⊂ Z17, C − 2 = {0,±1,±2,±6} ⊂ Z17

k = 9, C = {0, 1, 2, 6, 9, 12, 16, 17, 18} ⊂ Z30 , C−9 = {0,±3,±7,±8,±9} ⊂ Z30

k = 11, C = {0, 1, 11, 12, 18, 22, 24, 27, 30, 32, 36} ⊂ Z42,
C − 27 = {0,±3,±5,±9,±15,±16} ⊂ Z42

k = 13, C = {0, 1, 2, 3, 4, 7, 13, 21, 29, 36, 44, 52, 58} ⊂ Z61,
C − 2 = {0,±1,±2,±5,±11,±19,±27} ⊂ Z61
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A lower bound on nγ(k) is given in [2] by a simple construction that uses
the sets

T (r, k) = {0, 1, . . . , r − 1} ∪ {2r − 2, 3r − 2, . . . , kr − 2}.

We make the following observation:

Proposition 6. If r is odd or k is even, then T (r, k) is shift equivalent to a
symmetric set.

Proof. If r is odd, then the set

T (r, k)− r − 1
2

is symmetric. If k is even, then the set

T (r, k)−
(

k + 2
2

r − 2
)

is symmetric. The verification is straightforward; we omit its details.

Proposition 7. Let k = 2d + 1. Then n̂γ(k) ≥ d2 + 3d− 1.

Proof. Proposition 2.3 of [2] and some extra calculations show that, for each d,
T (d + 1, d + 1) is an SSC(d2 + 3d− 1) of cardinality 2d + 1. By Proposition 6,
T (d + 1, d + 1) is shift equivalent to a symmetric set for each d.

Proposition 7 shows that the scheme which uses two changes per cell is
superior to the scheme using one change per cell, assuming of course a fair
comparison when both schemes have the same overall distortion rate 2/d.
Indeed, if d is even, then using Zd ' Zd/2 × Zd/2 and defining the symbol-
assignment function by applying (3) to each of the factors produces a symbol
set of cardinality (2d/2 + 1)(2d/2 + 1) = d2 + 2d + 1. Similarly, if d is odd
then using Zd ' Z(d−1)/2 × Z(d+1)/2 and defining the symbol-assignment func-
tion by applying (3) to each of the factors produces a symbol set of cardinality
(2(d− 1)/2 + 1)(2(d + 1)/2 + 1) = d2 + 2d. In either case this is less than the
d2 + 3d− 1 symbols guaranteed by Proposition 7 combined with Lemma 3.

By non-exhaustive computer search we have verified that the bound of
Proposition 7 is not tight for odd k in the range 9 ≤ k ≤ 61. For example,
{0,±3,±12,±13,±21,±26,±48,±52,±54,±65,±84,±91} is an SSSC(195) of
cardinality 23 while Proposition 7 only guarantees n̂γ(23) ≥ 153. An interest-
ing open problem is to give a systematic construction of examples that improve
the bound of Proposition 7.
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3 Conclusion

We have extended our previous work on steganography schemes with pooling
to the case when two changes per cell are allowed. We have shown that such
schemes can be obtained from a specialized, symmetric version of sum covers
known in combinatorial design theory. We gave a construction that is better in
the information versus distortion metric than the schemes with one change per
cell.

A number of interesting questions about the symmetric strict sum covers
remain open. We conjecture that the equality n̂γ(k) = nγ(k) holds for a larger
set of values k than those established in Proposition 5. A construction of
examples that improve the bound of Proposition 7 would have practical value.
It appears that the optimal covers achieving the value n̂γ(k) often possess a lot
of symmetry; it would be interesting to study this phenomenon theoretically.
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