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1 Introduction

One of the most important applications of (w, r) superimposed codes (see, [1]
- [3] ) is the following cryptography problem. There are T users and N secret
keys. Each user has his own set of keys, and a group of users can communicate
if there exists a common secret key for the whole group. It is required that, for
any group of w users and any group of other r users, there should exist a key
such that all users of the first group have this key and thus can communicate,
while neither of the r users of the second group possess this key. Thus, users
of the first group can exchange information ”secretly” from users of the second
group.

Now assume that all users have the same set of keys, but any key has several
states. Let all keys have the same numbers of the states. A user can not change
key’s state and the user can communicate with users who have the key with
this state. There are several groups of users (the number of the groups is not
more then the number of the key’s states). We want that there is a key such
that for any group of users the key has the same state (and for different groups
- different states) and so the users from any group can communicate secretly
from users of other groups.

This situation can naturally be thought of as a q-ary N×T matrix C = ‖cij‖,
where cij = k if the jth user possesses the ith secret key with the state k. Then
the property described above means that, for any subsets R0, R1, . . . , Rq−1 ⊂
[T ] of cardinalities |Rs| = rs, there exists a row i in C such that cij = s
for all j from Rs, where s = 0, 1, . . . , q − 1. We will refer to the matrix as
(r0, r1, . . . , rq−1) superimposed code or colored superimposed code.

Of course, we would like to minimize the number of secret keys with a fixed
number of users, or, equivalently, maximize the number of users with a fixed
number of keys. Thus, the problem consists in finding a matrix C that obeys
this property, with the number of columns as large as possible (rows are of
length N). We will often refer to columns of C as codewords and refer to the
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matrix C itself as a q-ary code. Furthermore, in what follows, we use the term
“code of size N × T” rather than the more commonly used “code of length N
and cardinality T .”

Denote by N(T, r0, r1, . . . , rq−1) the minimum possible length of a
(r0, r1, . . . , rq−1) superimposed code of a given cardinality T . A colored code is
optimal if N = N(T, r0, r1, . . . , rq−1). The rate of a q-ary code of length N and
cardinality T is, as usual, R = (log T )/N . We are interested in the asymptotic
behavior of the rate

R(r0, r1, . . . , rq−1) = lim sup
T→∞

logq T

N(T, r0, r1, . . . , rq−1)

of such (optimal) codes.

2 Some results

Let us start with the formal definition of (r0, r1, . . . , rq−1) superimposed codes.
Definition 1. A q-ary N ×T matrix C = ‖cij‖ is called a (r0, r1, . . . , rq−1)

superimposed code of size N ×T if, for any disjoint subsets R0, R1, . . . , Rq−1 ⊂
[T ] of cardinalities |Rs| = rs, there exists a coordinate i ∈ [N ] such that cij = s
for all j ∈ Rs, where s = 0, 1, . . . , q − 1.

Theorem 1. For colored superimposed codes we have

R(r0, r1, . . . , rq−1) ≥ 1/(S − 1) logq

SS

SS − rr0
0 rr1

1 . . . r
rq−1

q−1

,

where S = (r0 + r1 + . . . + rq−1).

The next important parameter will be defined for an arbitrary q-ary code
C of size N × T . Consider positive integers (x0, x1, . . . , xq−1) . Fix a collection
I consisting of X = x0 + x1 + . . . + xq−1 codewords and denote by CX(I) the
submatrix of C formed by these codewords. Thus, the matrix CX(I) is of size
N ×X. By the “X-distance” for the collection I, we call the number of rows
of CX(I) such that each row has xs elements with value s for all s, where
s = 0, 1, . . . , q − 1. We denote this number by d(CX(I)).

Definition 2. The minimum “X-distance” for a q-ary code C is the value
dX = min|I|=X d(CX(I)). Denote by R(N)(dX) the rate of a q-ary code of length
N with minimum “X-distance” dX .

Theorem 2. For q-ary code C of length N with minimum “X-distance”
dX we have the following asymptotic bound:



Lebedev 179

R(N)(dX) ≤ (1− XXx0!x1! . . . xq−1!
xx0

0 xx1
1 . . . x

xq−1

q−1 X!
dX

N
)(1− logq(q − 1)).

The following lemma explains the relation between the parameter dX and
(r0, r1, . . . , rq−1) superimposed codes.

Lemma. If a (r0, r1, . . . , rq−1) superimposed code C of size N × T exists,
then a (r0 − x0, r1 − x1, . . . , rq−1 − xq−1) superimposed code of size

bdXx0!x1! . . . xq−1!/X!c × (T −X).

exists.

Corollary. If there exists a (r0, r1, . . . , rq−1) superimposed code C of cardi-
nality T with minimum “X-distance” dX , then, for positive integers xs (xs <
rs), we have

N(T −X, r0 − x0, r1 − x1, . . . , rq−1 − xq−1) ≤ dXx0!x1! . . . xq−1!
X!

.

Theorem 3. For the rate of (r0, r1, . . . , rq−1) superimposed codes, we have
the asymptotic bound:

R(r0, r1, . . . , rq−1) ≤
R(r0 − x0, r1 − x1, . . . , rq−1 − xq−1)

R(r0 − x0, . . . , rq−1 − xq−1)/(1− logq(q − 1)) + XX/(xx0
0 . . . x

xq−1

q−1 )
.

Proof. Consider an optimal (r0, r1, . . . , rq−1) superimposed code of cardinal-
ity T , length N(T, r0, r1, . . . , rq−1), and rate RT (r0, r1, . . . , rq−1). Theorem 2
implies that, as T →∞

RT (r0, r1, . . . , rq−1) ≤

1− XXdXx0!x1! . . . xq−1!
xx0

0 xx1
1 . . . x

xq−1

q−1 X!N(T, r0, r1, . . . , rq−1)
)(1− logq(q − 1)) + o(1)

Using the corollary of the lemma, we get
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RT (r0, r1, . . . , rq−1) ≤

(1− XXN(T −X, r0 − x0, r1 − x1, . . . , rq−1 − xq−1)
xx0

0 xx1
1 . . . x

xq−1
q−1 N(T, r0, r1, . . . , rq−1)

)(1− logq(q − 1)) + o(1).

Let us apply Definition 2 of RT−X(r0−x0, r1−x1, . . . , rq−1−xq−1) and pass
to the limit as T →∞ on both sides of the above inequality. As a result, we get
a recurrence inequality for the rate R(r0, r1, . . . , rq−1), which can be written as

R(r0, r1, . . . , rq−1)(1 +
XX(1− logq(q − 1))

xx0
0 xx1

1 . . . x
xq−1
q−1 R(r0 − x0, r1 − x1, . . . , rq−1 − xq−1)

)

≤ 1− logq(q − 1).

From this inequality, the statement of the theorem follows.
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