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Abstract. Using lower bounds on distance spectrum components of a code on
the Euclidean sphere, we improve the known asymptotical upper bounds on the
cardinality of multiple packings of the sphere by balls of smaller radii.

Let Rn be the n-dimensional Euclidean space, and Sn−1(r) ⊂ Rn be the
(closed) Euclidean sphere of radius r with the center in the origin. Let further
S̃n−1(r, ā) be the open ball of radius r centered in ā ∈ Rn. Multiple L-packing
K(L, t) by balls of radius t is a finite set (≡code) K ⊂ Sn−1(1), such that for
any subset {x̄1, . . . , x̄L+1} ⊂ K of L + 1 points (≡codewords) we have

L+1⋂

i=1

S̃n(t, x̄i) = ∅.

In other words, any point on the unit sphere can be at distance not exceeding
t from at most L points from K.

Let R(K(L, t)) = ln |K(L,t)|
n be the rate of the multiple packing. The problem

is to find bounds on the value

RL(t) = lim sup
n→∞

maxR(K(L, t)).

The value RL(t) has been studied before, e.g. in connection with list decoding
in Gaussian channel, see [1, 2] and references therein. The best known bounds
are as follows.

Theorem 1

RL(t) ≥ 1
2

ln
L

(L + 1)t2
+

1
2L

ln
1

(L + 1)(1− t2)
. (1)

RL(t) ≤ 1
2

ln
L

(L + 1)t2
. (2)
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Bound (1) was proved in [1], while bound (2) was first proved in [2] and later
in [1] using an essentially different approach. In this work we present further
improvement of the upper bound (2).

Throughout we identify a point in Rn with the vector from the origin to the
point. Denote

αϕ(θ) = 2 arcsin
sin(θ/2)

sinϕ
, βϕ(θ) = arccos

cosϕ

cos(θ/2)
,

j(x, y) = (1 + y)H
(

y

y + 1

)
− ln

(
1
2
(x +

√
(1 + 2y)2x2 − 4y(1 + y)

)

+(1 + 2y) ln
(1 + 2y)x +

√
(1 + 2y)2x2 − 4y(1 + y)
2(1 + y)

,

where H(z) = −z ln z− (1− z) ln(1− z), z ∈ [0, 1]. For a given R denote by ρL

the unique solution of

R = (1 + ρ)H
(

ρ

1 + ρ

)
,

and denote by θL the unique solution of

R = R(θL) =
1 + sin θL

2 sin θL
H

(
1− sin θL

1 + sin θL

)
.

Note that
2
√

ρL(ρL + 1)
1 + 2ρL

= cos θL,

and if θ is the minimal angle between a pair of points from K ⊂ Sn−1(1), the
rate of this code satisfies [3]:

R ≤ R(θ). (3)

Denote also

bK(x, c̄) =
∣∣∣∣
{

c̄1 : (c̄, c̄1) ∈ K ×K : (c̄, c̄1)/(‖c̄‖ · ||c̄1||) = x

}∣∣∣∣,

where (ā, b̄) = a1b1 + . . . + anbn stands for the scalar product. We will use the
following result from [4].

Theorem 2 For K ⊂ Sn−1(r), with ln |K| = Rn(1 + o(1)), and ρ and φ satis-
fying

0 ≤ ρ ≤ ρL(R + sinϕ), e−R ≤ ϕ ≤ π/2,

there exists θ, and c̄ ∈ K, such that

2
√

ρ(1 + ρ)/(1 + 2ρ) ≤ cosαϕ(θ) ≤ 1
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and

1
n

bK(cos θ, c̄) ≥ R + 2 ln sinϕ + ln sinβϕ(θ)− j(cosαϕ(θ), ρ).

It is easy to see that bK(cos θ, c̄) is the number of codewords in the cross-section
of the unit sphere by the hyperplane orthogonal to the vector c̄, and intersecting
c̄ in the point r · cos θ · c̄/‖c̄‖.

Now we describe a recursive procedure of constructing a simplex of L + 1
codewords having sufficiently small pairwise distances. We start with a code
K ⊂ Sn−1(1) and consider the cross-section of Sn−1(1) by the hyperplane.
Then for each ϕ and ρ, as in Theorem 2, there exists θ, as in Theorem 2, such
that for the cross-section of Sn−1(1) by the hyperplane which is orthogonal to
some vector c̄ and being at distance cos θ from origin, bK(cos θ, c̄) satisfies (4).
Note that the cross-section of the sphere by hyperplane is again a sphere of
dimension n − 2, having radius r · sin θ and centered in r · cos ·θ · c̄/‖c̄‖. Next
we shift the center of this new sphere to the origin, and once again consider the
cross-section of this sphere by the hyperplane as in the previous step. Now, the
new code K1 has at least bK(cos θ, c̄) codewords and its cross-section contains
at least bK1(cos θ1, c̄1) codewords. Notice that on the second step we choose
new ϕ1 and ρ1. The procedure can be continued.

Let us provide a formal description of the procedure. On the 0-th step we
have a code K0 ⊂ Sn−1(1), ln |K0| ∼ [nR]. On i−th step, i ≥ 1, we obtain a
code Ki of rate

ln |Ki|/n ∼ Ri ≥ Ri−1 + 2 ln sinϕi − lnβϕi(θi)− j(cosαϕi(θi), ρi).

We implement this action L + 1 times, and on the i-th step, i ≥ 1, we find
(if Ri > 0) a new codeword c̄i such that its distance from c̄j , 0 ≤ j < i, is
dj = 2rj · sin θj/2. We stop when we fix L + 1 codewords c̄i ∈ Ki ⊂ K, i =
0, 1, . . . , L. Note also, that KL ⊂ KL−1 ⊂ · · · ⊂ K0. What should be done
next, is to optimize the set dj , j = 0, 1, . . . , L, in such a way that the simplex
c̄i, i = 0, 1, . . . , L, to be contained in a closed ball of the minimum possible
radius t. This means that there exists a point on Sn−1(1) which is covered by
L + 1 balls, which yields that an arbitrary code of rate R on the Euclidean
sphere is L-packing by the balls of radius strictly less than t. Note that it is
necessary to optimize over ϕi and ρi in such a way that Ri > 0. It is unlikely
that this can be done analytically, however this is an affordable task for the
computer. One can easily derive the expression for t as a function of pairwise
distances dij = dj = ‖c̄i − c̄j‖, j < i, see e.g. [5].

Consider the simplest case of L = 2. Let us have a code K0 ⊂ Sn−1(1) of
rate R0. Set ϕ0 = π/2, ρ0 = ρL − ε, for some ε ¿ ρL. The function j(x, ρ) is
increasing with x ∈ [0, 1],

j(1, ρ) = (1 + ρ)H
(

ρ

ρ + 1

)
.
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Then for the rate R1 and some θ0 < θL + δ,

R1 ≥ R− (1 + ρL)H
(

ρL

ρL + 1

)
+ ε1 = ε1.

Next, for the code K1 ⊂ Sn−2(sin θ0) of rate R1 we choose θ1 = π/2. We have
d0 = 2 sin(θ0/2), d1 =

√
2 sin θ0. The points c̄0, c̄1 and c̄2 are the vertices of a

triangle with edges d0, d0 and d1. The minimal radius t of the circle passing
through these vertices is

t =
d0

2
√

1− d2
1

4d2
0

=
√

2 sin(θ0/2)√
1 + sin2(θ0/2)

.

Then

sin θ0 =
2
√

2t
√

1− t2

2− t2
.

Since θ0 ∼ θ from (3), we obtain

R2(t) ≤ 2− t2 + 2
√

2
√

1− t2

4
√

2
√

1− t2
H


1− 2

√
2
√

1−t2

2−t2

1 + 2
√

2
√

1−t2

2−t2


 . (4)

Comparing it to the specification of (2) for L = 2,

R2(t) ≤ 1
2

ln
2

3t2
,

we conclude that (4) is tighter.

References

[1] V. Blinovsky, Multiple packing of the Euclidean sphere, IEEE Trans. In-
form. Theory 45, 1999, 1334-1337.

[2] N. Blachman, L. Few, Multiple packing of spherical caps, Mathematika 10,
1963, 84-88.

[3] G. Kabatyansky, V. Levenshtein, Bounds for packing on the sphere and in
the space, Probl. Inform. Transm. 14, 3-25, 1978.

[4] Y. Ben-Haim, S. Litsyn, Improved upper bounds on the reliability function
of Gaussian channel, IEEE Trans. Inform. Theory 54, 5-12, 2008.

[5] I. Bocharova, R. Johannesson, B. Kudryashov, M. Loncar, An improved
bound on the list error probability and list distance properties, IEEE Trans.
Inform. Theory 54, 2008, 13-32.


