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Abstract. Using lower bounds on distance spectrum components of a code on
the Euclidean sphere, we improve the known asymptotical upper bounds on the
cardinality of multiple packings of the sphere by balls of smaller radii.

Let R™ be the n-dimensional Euclidean space, and S"~!(r) C R” be the
(closed) Euclidean sphere of radius r with the center in the origin. Let further
S"=1(r,a) be the open ball of radius r centered in a € R™. Multiple L-packing
K(L,t) by balls of radius t is a finite set (=code) K C S"~!(1), such that for
any subset {Z1,...,Zr4+1} C K of L + 1 points (=codewords) we have

L+1

ﬂ gn(t,fi) = 0.
i=1

In other words, any point on the unit sphere can be at distance not exceeding
t from at most L points from K.

Let R(IC(L,t)) = KL he the rate of the multiple packing. The problem

is to find bounds on the 7\l/adue

Rr(t) = limsupmax R(K(L,t)).
n—oo
The value Ry (t) has been studied before, e.g. in connection with list decoding
in Gaussian channel, see [1, 2] and references therein. The best known bounds
are as follows.

Theorem 1
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Bound (1) was proved in [1], while bound (2) was first proved in [2] and later
in [1] using an essentially different approach. In this work we present further
improvement of the upper bound (2).

Throughout we identify a point in R™ with the vector from the origin to the
point. Denote

B . sin(6/2) _ 08
ay(f) = 2arcsin g B, (0) = arccos cos(0/2)"
fo) = @t () = (G VI BPE a5
1+ 2 (1+2y)z + /(1 +2y)%2? — 4y(1 +y)

2(1+y) ’
where H(z) = —zlnz— (1 —2)In(1—2), z € [0,1]. For a given R denote by pr,

the unique solution of
p
R=(1+pH|—],
o (42-)

and denote by 6, the unique solution of

1+ sinfy, 1 —sin @y,
= R(0;) = H .
k=R00) = 5506, <1+sin«9L>
Note that
2Vpilpr +1) _
1+2,0L L,

and if § is the minimal angle between a pair of points from K C S"71(1), the
rate of this code satisfies [3]:
R < R(6). (3)

Denote also

)

benc) = |{ars (e €K x ks @)/l ) = o}

where (a@,b) = a1by + ... + apb, stands for the scalar product. We will use the
following result from [4].

Theorem 2 For K C S 1(r), with In|K| = Rn(1 + o(1)), and p and ¢ satis-
fying
0<p<pr(R+sing), e <p<n/2

there exists 0, and ¢ € K, such that

2/p(L+ p)/(1+2p) < cosa,(0) < 1
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and
1
;b;g(cos 6,¢) > R+ 2Insin ¢ + Insin 5,(0) — j(cos a,(0), p).

It is easy to see that bx(cos 0, ¢) is the number of codewords in the cross-section
of the unit sphere by the hyperplane orthogonal to the vector ¢, and intersecting
¢ in the point r - cos§ - ¢/||||.

Now we describe a recursive procedure of constructing a simplex of L + 1
codewords having sufficiently small pairwise distances. We start with a code
K c S"1(1) and consider the cross-section of S"~1(1) by the hyperplane.
Then for each ¢ and p, as in Theorem 2, there exists 6, as in Theorem 2, such
that for the cross-section of S"~1(1) by the hyperplane which is orthogonal to
some vector ¢ and being at distance cosf from origin, bi(cos#, ¢) satisfies (4).
Note that the cross-section of the sphere by hyperplane is again a sphere of
dimension n — 2, having radius r - sin € and centered in r - cos -6 - ¢/||¢||. Next
we shift the center of this new sphere to the origin, and once again consider the
cross-section of this sphere by the hyperplane as in the previous step. Now, the
new code K; has at least bi(cosf,¢) codewords and its cross-section contains
at least by, (cosf,¢1) codewords. Notice that on the second step we choose
new 1 and pj. The procedure can be continued.

Let us provide a formal description of the procedure. On the 0-th step we
have a code Ko C S""1(1), In|Ko| ~ [nR]. On i—th step, i > 1, we obtain a
code K; of rate

In|K;|/n~ R; > Ri—1 +2Insing; —In Gy, (0;) — j(cos a, (65), pi)-

We implement this action L + 1 times, and on the i-th step, i« > 1, we find
(if R; > 0) a new codeword ¢ such that its distance from ¢;, 0 < j < 4, is
dj = 2r;j -sinf;/2. We stop when we fix L + 1 codewords ¢; € K; C K, i =
0,1,...,L. Note also, that Ky, € K1 C --- C Ky. What should be done
next, is to optimize the set d;, j = 0,1,..., L, in such a way that the simplex
¢, t =0,1,...,L, to be contained in a closed ball of the minimum possible
radius ¢. This means that there exists a point on S™"~!(1) which is covered by
L + 1 balls, which yields that an arbitrary code of rate R on the Euclidean
sphere is L-packing by the balls of radius strictly less than t. Note that it is
necessary to optimize over ¢; and p; in such a way that R; > 0. It is unlikely
that this can be done analytically, however this is an affordable task for the
computer. One can easily derive the expression for ¢ as a function of pairwise
distances d;; = dj = ||&; — €|, j < 1, see e.g. [5].

Consider the simplest case of L = 2. Let us have a code Ko C S""1(1) of
rate Ry. Set @9 = 7/2, po = pr — €, for some £ < pr. The function j(z,p) is
increasing with x € [0, 1],

i(,p) = (1 +p)H <pi1> :
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Then for the rate R; and some 6y < 01, + 9,

PL
Ri>R—(1+p)H + €1 = €.
12 (1+pL) (PL n 1) 1 1
Next, for the code K1 C S"2(sinfy) of rate R we choose ; = 7/2. We have
do = 2sin(6y/2), di = v/2sinfy. The points ¢, ¢ and & are the vertices of a
triangle with edges dy, dyp and d;. The minimal radius ¢ of the circle passing
through these vertices is

‘= do . ﬂsin(90/2)
@ \/1+sin?(6p/2)
24/1— 7Pl
0
Then
_ 2v/2t/1 — ¢2
S1n 00 = W

Since 0y ~ 6 from (3), we obtain

R(t)<2*t2+2\/§vl*t2 1 - 2 (4)
20 = 4\@1 /1 — 42 1+ 2V2v1=¢2 |’

2—t2

Comparing it to the specification of (2) for L = 2,

2
< — J—
Rg(t) =3 In 3t27

_

we conclude that (4) is tighter.
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