New bounds for multiple packings of Euclidean sphere

VLADIMIR BLINOVSKY\(^1\) vblinovs@yandex.ru
Institute of Information Transmission Problems,
B. Karetnyi, 19, Moscow, RUSSIA

SIMON LITSYN\(^2\) litsyn@eng.tau.ac.il
School of Electrical Engineering, Tel Aviv University,
Ramat Aviv, 69978 ISRAEL

Abstract. Using lower bounds on distance spectrum components of a code on the Euclidean sphere, we improve the known asymptotical upper bounds on the cardinality of multiple packings of the sphere by balls of smaller radii.

Let \(\mathbb{R}^n \) be the \(n \)-dimensional Euclidean space, and \(S^{n-1}(r) \subset \mathbb{R}^n \) be the (closed) Euclidean sphere of radius \(r \) with the center in the origin. Let further \(S^{n-1}(r, \vec{a}) \) be the open ball of radius \(r \) centered in \(\vec{a} \in \mathbb{R}^n \). Multiple \(L \)-packing \(\mathcal{K}(L, t) \) by balls of radius \(t \) is a finite set (\(\equiv \)code) \(\mathcal{K} \subset S^{n-1}(1) \), such that for any subset \(\{\bar{x}_1, \ldots, \bar{x}_{L+1}\} \subset \mathcal{K} \) of \(L + 1 \) points (\(\equiv \)codewords) we have

\[
\bigcap_{i=1}^{L+1} S^n(t, \bar{x}_i) = \emptyset.
\]

In other words, any point on the unit sphere can be at distance not exceeding \(t \) from at most \(L \) points from \(\mathcal{K} \).

Let \(R(\mathcal{K}(L, t)) = \frac{\ln|\mathcal{K}(L, t)|}{n} \) be the rate of the multiple packing. The problem is to find bounds on the value

\[
R(L)(t) = \limsup_{n \to \infty} \max R(\mathcal{K}(L, t)).
\]

The value \(R(L)(t) \) has been studied before, e.g. in connection with list decoding in Gaussian channel, see [1, 2] and references therein. The best known bounds are as follows.

Theorem 1

\[
R(L)(t) \geq \frac{1}{2} \ln \frac{L}{(L+1)t^2} + \frac{1}{2L} \ln \frac{1}{(L+1)(1-t^2)}.
\]

\[\text{(1)}\]

\[
R(L)(t) \leq \frac{1}{2} \ln \frac{L}{(L+1)t^2}.
\]

\[\text{(2)}\]

\(^1\)Supported in part by RFBR grant 06-01-00226

\(^2\)Supported in part by ISF 553-03 grant
Bound (1) was proved in [1], while bound (2) was first proved in [2] and later in [1] using an essentially different approach. In this work we present further improvement of the upper bound (2).

Throughout we identify a point in \mathbb{R}^n with the vector from the origin to the point. Denote
\[
\alpha(\theta) = 2 \arcsin \frac{\sin(\theta/2)}{\sin \varphi}, \quad \beta(\theta) = \arccos \frac{\cos \varphi}{\cos(\theta/2)},
\]
\[
j(x, y) = (1 + y)H \left(\frac{y}{y + 1} \right) - \ln \left(\frac{1}{2} (x + \sqrt{(1 + 2y)^2x^2 - 4y(1 + y)}) \right)
\]
\[+ (1 + 2y) \ln \left(\frac{(1 + 2y)x + \sqrt{(1 + 2y)^2x^2 - 4y(1 + y)}}{2(1 + y)} \right),
\]
where $H(z) = -z \ln z - (1 - z) \ln (1 - z)$, $z \in [0, 1]$. For a given R denote by ρ_L the unique solution of
\[
R = (1 + \rho)H \left(\frac{\rho}{1 + \rho} \right),
\]
and denote by θ_L the unique solution of
\[
R = R(\theta_L) = \frac{1 + \sin \theta_L}{2 \sin \theta_L} H \left(\frac{1 - \sin \theta_L}{1 + \sin \theta_L} \right).
\]

Note that
\[
\frac{2\sqrt{\rho_L(\rho_L + 1)}}{1 + 2\rho_L} = \cos \theta_L,
\]
and if θ is the minimal angle between a pair of points from $\mathcal{K} \subset S^{n-1}(1)$, the rate of this code satisfies [3]:
\[
R \leq R(\theta). \tag{3}
\]

Denote also
\[
b_\mathcal{K}(x, \bar{c}) = \left\{ \bar{c}_1 : (\bar{c}, \bar{c}_1) \in \mathcal{K} \times \mathcal{K} : (\bar{c}, \bar{c}_1)/(||\bar{c}|| \cdot ||\bar{c}_1||) = x \right\},
\]
where $(\bar{a}, \bar{b}) = a_1b_1 + \ldots + a_nb_n$ stands for the scalar product. We will use the following result from [4].

Theorem 2 For $\mathcal{K} \subset S^{n-1}(r)$, with $\ln |\mathcal{K}| = Rn(1 + o(1))$, and ρ and φ satisfying
\[
0 \leq \rho \leq \rho_L(R + \sin \varphi), \quad e^{-R} \leq \varphi \leq \pi/2,
\]
there exists θ, and $\bar{c} \in \mathcal{K}$, such that
\[
2\sqrt{\rho(1 + \rho)/(1 + 2\rho)} \leq \cos \alpha(\theta) \leq 1
\]
and
\[
\frac{1}{n} b_{\mathcal{K}}(\cos \theta, \bar{c}) \geq R + 2 \ln \sin \varphi + \ln \sin \beta_{\varphi}(\theta) - j(\cos \alpha_{\varphi}(\theta), \rho).
\]

It is easy to see that \(b_{\mathcal{K}}(\cos \theta, \bar{c}) \) is the number of codewords in the cross-section of the unit sphere by the hyperplane orthogonal to the vector \(\bar{c} \), and intersecting \(\bar{c} \) in the point \(r \cdot \cos \theta \cdot \bar{c}/\|\bar{c}\| \).

Now we describe a recursive procedure of constructing a simplex of \(L + 1 \) codewords having sufficiently small pairwise distances. We start with a code \(\mathcal{K} \subset S^{n-1}(1) \) and consider the cross-section of \(S^{n-1}(1) \) by the hyperplane. Then for each \(\varphi \) and \(\rho \), as in Theorem 2, there exists \(\theta \), as in Theorem 2, such that for the cross-section of \(S^{n-1}(1) \) by the hyperplane which is orthogonal to some vector \(\bar{c} \) and being at distance \(\cos \theta \) from origin, \(b_{\mathcal{K}}(\cos \theta, \bar{c}) \) satisfies (4).

Note that the cross-section of the sphere by hyperplane is again a sphere of dimension \(n - 2 \), having radius \(r \cdot \sin \theta \) and centered in \(r \cdot \cos \theta \cdot \bar{c}/\|\bar{c}\| \). Next we shift the center of this new sphere to the origin, and once again consider the cross-section of this sphere by the hyperplane as in the previous step. Now, the new code \(\mathcal{K}_1 \) has at least \(b_{\mathcal{K}}(\cos \theta, \bar{c}) \) codewords and its cross-section contains at least \(b_{\mathcal{K}_1}(\cos \theta_1, \bar{c}_1) \) codewords. Notice that on the second step we choose new \(\varphi_1 \) and \(\rho_1 \). The procedure can be continued.

Let us provide a formal description of the procedure. On the 0-th step we have a code \(\mathcal{K}_0 \subset S^{n-1}(1) \), \(\ln |\mathcal{K}_0| \sim [nR] \). On the \(i \)-th step, \(i \geq 1 \), we obtain a code \(\mathcal{K}_i \) of rate
\[
\ln |\mathcal{K}_i|/n \sim R_i \geq R_{i-1} + 2 \ln \sin \varphi_i - \ln \beta_{\varphi_i}(\theta_i) - j(\cos \alpha_{\varphi_i}(\theta_i), \rho_i).
\]

We implement this action \(L + 1 \) times, and on the \(i \)-th step, \(i \geq 1 \), we find (if \(R_i > 0 \)) a new codeword \(\bar{c}_i \) such that its distance from \(\bar{c}_j \), \(0 \leq j < i \), is \(d_j = 2r_j \cdot \sin \theta_j/2 \). We stop when we fix \(L + 1 \) codewords \(\bar{c}_i \in \mathcal{K}_i \subset \mathcal{K} \), \(i = 0, 1, \ldots, L \). Note also, that \(\mathcal{K}_L \subset \mathcal{K}_{L-1} \subset \cdots \subset \mathcal{K}_0 \). What should be done next, is to optimize the set \(d_j, j = 0, 1, \ldots, L \), in such a way that the simplex \(\bar{c}_i \), \(i = 0, 1, \ldots, L \), to be contained in a closed ball of the minimum possible radius \(t \). This means that there exists a point on \(S^{n-1}(1) \) which is covered by \(L + 1 \) balls, which yields that an arbitrary code of rate \(R \) on the Euclidean sphere is \(L \)-packing by the balls of radius strictly less than \(t \). Note that it is necessary to optimize over \(\varphi_i \) and \(\rho_i \) in such a way that \(R_i > 0 \). It is unlikely that this can be done analytically, however this is an affordable task for the computer. One can easily derive the expression for \(t \) as a function of pairwise distances \(d_{ij} = d_j = \|\bar{c}_i - \bar{c}_j\|, j < i \), see e.g. [5].

Consider the simplest case of \(L = 2 \). Let us have a code \(\mathcal{K}_0 \subset S^{n-1}(1) \) of rate \(R_0 \). Set \(\varphi_0 = \pi/2, \rho_0 = \rho_L - \varepsilon \), for some \(\varepsilon \ll \rho_L \). The function \(j(x, \rho) \) is increasing with \(x \in [0, 1] \),
\[
j(1, \rho) = (1 + \rho) H \left(\frac{\rho}{\rho + 1} \right).
\]
Then for the rate R_1 and some $\theta_0 < \theta_L + \delta$,

$$R_1 \geq R - (1 + \rho_L)H\left(\frac{\rho_L}{\rho_L + 1}\right) + \epsilon_1 = \epsilon_1.$$

Next, for the code $K_1 \subset S^{n-2}(\sin \theta_0)$ of rate R_1 we choose $\theta_1 = \pi/2$. We have $d_0 = 2\sin(\theta_0/2)$, $d_1 = \sqrt{2}\sin \theta_0$. The points \bar{c}_0, \bar{c}_1 and \bar{c}_2 are the vertices of a triangle with edges d_0, d_0 and d_1. The minimal radius t of the circle passing through these vertices is

$$t = \frac{d_0}{2\sqrt{1 - \frac{d_2^2}{d_0^2}}} = \frac{\sqrt{2}\sin(\theta_0/2)}{\sqrt{1 + \sin^2(\theta_0/2)}.}$$

Then

$$\sin \theta_0 = \frac{2\sqrt{2}t\sqrt{1 - t^2}}{2 - t^2}.$$

Since $\theta_0 \sim \theta$ from (3), we obtain

$$R_2(t) \leq \frac{2 - t^2 + 2\sqrt{2}\sqrt{1 - t^2}}{4\sqrt{2}\sqrt{1 - t^2}}H\left(\frac{1 - 2\sqrt{2}\sqrt{1 - t^2}}{2 - \sqrt{2}\sqrt{1 - t^2}}\right) - \frac{2\sqrt{2}\sqrt{1 - t^2}}{2 - t^2}.$$

Comparing it to the specification of (2) for $L = 2$,

$$R_2(t) \leq \frac{1}{2} \ln \frac{2}{3t^2},$$

we conclude that (4) is tighter.

References

