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Abstract. The problem of efficient computing of binary and ternary positive (or
zero) polarity Reed-Muller (PPRM) transform is important for many areas. The
matrices, determining these transforms, are defined recursively or by Kronecker
product. Using this fact, we apply the dynamic-programming strategy to develop
three algorithms. The first of them is a new version of a previous our algorithm for
performing the binary PPRM transform. The second one is a bit-wise implementa-
tion of the first algorithm. The third one performs the ternary PPRM transform.
The last two algorithms have better time complexities in comparison with other
algorithms, known to us.

1 Introduction

A well-known theorem in the theory of Boolean functions states that any
Boolean function f(xn−1, xn−2, . . . , x0) can be represented in an unique way
by its Zhegalkin polynomial :

f(xn−1, xn−2, . . . , x0) = a0 ⊕ a1x0 ⊕ a2x1 ⊕ a3x1x0 ⊕ . . . (1)
⊕ aixj1xj2 . . . xjk

⊕ · · · ⊕ a2n−1xn−1xn−2 . . . x0,

where the coefficients ai ∈ {0, 1}, 0 ≤ i ≤ 2n − 1, i = 2j1 + 2j2 + · · ·+ 2jk , j1 >
j2 > · · · > jk, and all variables are positive (uncomplemented). This canonical
form is also known as Positive Polarity Reed-Muller (PPRM) expansion. If
each variable xi, 0 ≤ i ≤ n − 1, in (1) appears either uncomplemented, or
complemented throughout, we obtain a Fixed Polarity Reed-Muller (FPRM)
expansion. Let pi ∈ {0, 1} denotes the polarity of xi, 0 ≤ i ≤ n − 1, i.e. when
pi = 0 the polarity is positive (xi is uncomplemented), and when pi = 1 the
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polarity is negative (xi is complemented). The function f(xn−1, xn−2, . . . , x0)
has a FPRM expansion of polarity p, 0 ≤ p ≤ 2n − 1, when the integer p has
a n-digit binary representation pn−1, pn−2 . . . p0 and pi is the polarity of xi, for
i = n− 1, n− 2, . . . , 0. Thus f has 2n FPRM possible expansions, each of them
is a canonical form.

The FPRM binary transform is an important and known XOR-based ex-
pansion, having many applications in digital logic design, testability, fault de-
tection, image compression, Boolean function decomposition, error correcting
codes, classification of logic functions, and development of models for decision
diagrams [2, 4, 5]. Because of the increasing interest in multiple-valued logic
(MVL), the binary FPRM expansion has been extended to represent multiple-
valued functions as well. Their FPRM expansions have also many applications
in the just mentioned areas.

Every ternary function f(x) of n-variable can also be represented by its
canonical FPRM polynomial expansions as follows:

fp(xn−1, xn−2, . . . , x0) =
3n−1∑

i=0

ai.x̂
kn−1

n−1 x̂
kn−2

n−2 . . . x̂k0
0 , (2)

where:
• all additions and multiplications are in GF (3);
• i is the decimal equivalent of the n-digit ternary number kn−1kn−2 . . . k0;
• x̂j = xj + pj ∈ {xj , xj + 1, xj + 2} is the literal of the j-th variable, in de-

pendence of the polarity pj . The required polarity is given (fixed) by the integer
p, 0 ≤ p ≤ 3n − 1, which n-digit ternary representation is pn−1, pn−2 . . . p0;

• the coefficient ai ∈ {0, 1, 2}, ai = ai(p) because it depends on the given
polarity p;

• x̂0
j = 1, x̂1

j = x̂j and x̂2
j = x̂j .x̂j .

Optimization of FPRM transforms is an important problem in the area of
logic design and spectral transforms. It concerns development of methods for
determining the best FPRM representation of a given function among all pos-
sible FPRM expansions of it. The best is this one, which has minimal number
of product terms or minimal number of literals. There are many approaches to
perform such optimization.

Here we consider the problem: ”A Boolean (or ternary) function is given by
its vector of functional values. Compute the vector of coefficients of its PPRM
expansion”. We represent three algorithms for fast solving of this problem.
They can be used for computing of the rest FPRM expansions of a given func-
tion, as do this the algorithms and method in [4, 8]. The main idea of the
proposed algorithms can be extended and applied for obtaining of other FPRM
expansion, for computing PPRM expansions of MVL functions over other finite
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fields, and also for fast computing of matrix-vector multiplication when the
matrix is defined recursively (by Kronecker product).

2 Binary PPRM transform

Many scientists investigate the computing of binary FPRM transform – by
applying of coefficient maps (Karnaugh maps folding, when the number of vari-
ables n ≤ 6), coefficient matrix and tabular techniques [1, 6, 8, 10, 11]. All they
consider algorithms for computing the PPRM transform in particular, and most
of them apply a coefficient matrix approach. Let f be a n-variable boolean
function, given by its vector of values b = (b0, b1, . . . , b2n−1). The forward and
inverse PPRM transform between the coefficient vector a = (a0, a1, . . . , a2n−1)
of Eq. (1) and the vector b is defined by the 2n × 2n matrix Mn as follows
[6, 9, 10]:

aT = Mn.bT , and bT = M−1
n .aT over GF (2). (3)

The matrix Mn is defined recursively, as well as by Kronecker product:

M1 =
(

1 0
1 1

)
, Mn =

(
Mn−1 On−1

Mn−1 Mn−1

)
, or Mn = M1 ⊗Mn−1 =

n⊗

i=1

M1, (4)

where Mn−1 is the corresponding transform matrix of dimension 2n−1 × 2n−1,
and On−1 is a 2n−1 × 2n−1 zero matrix. Furthermore Mn = M−1

n over GF (2),
and hence the forward and the inverse transform are performed in an uniform
way. So we shall consider only the forward one. In all papers known to us, there
are not complete description of the algorithm for computing of such transform,
defined by equalities (3) and (4). These equalities are derived in [6] (Theorem 2)
and computing of the transform is illustrated by an example, almost the same is
done in [9]. In [1] some equalities, which concern computing of the coefficients of
the vector a and relations between them, are derived. Computing of the PPRM
transform in [10] is illustrated by its ”butterfly” (or ”signal flow”) diagram only.

Ten years ago we have proposed an algorithm for fast computing the PPRM
transform (called by as ”Zhegalkin transform”) [7]. We developed this algorithm
independently of other authors, because their papers in this area were unknown
(unaccessible) to us at this time. Here we propose another version of this
algorithm, created by the dynamic-programming approach. We also comment
its bit-wise implementation, which improves significantly the previous time and
space complexity. The same approach will be applied for fast computing of the
PPRM transform over GF (3).

Let v be a vector, v ∈ {0, 1}2n
. We could consider each position of the

vector v labeled with the corresponding vector of {0, 1}n, so that the labels are
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ordered lexicographically. Let α ∈ {0, 1}k, 1 ≤ k < n. We will denote by v[α]

the sub-vector of these positions in v, first k-coordinates of labels of which are
fixed to α. We can rewrite Eq. (3) as follows:

aT = Mn.bT =
(

Mn−1 On−1

Mn−1 Mn−1

)(
bT
[0]

bT
[1]

)
(5)

=

(
Mn−1.b

T
[0]

Mn−1.b
T
[0] ⊕Mn−1.b

T
[1]

)
=

(
aT

[0]

aT
[1]

)
.

Therefore:

aT
[0] = Mn−1.b

T
[0],

aT
[1] = Mn−1.b

T
[0] ⊕Mn−1.b

T
[1] = aT

[0] ⊕Mn−1.b
T
[1].

(6)

The last two equalities define recursively the solution of the problem. They
demonstrate how it can be constructed by the solutions of its subproblems. So
the problem exhibits the optimal substructure property – the first key ingredient
for applying the dynamic-programming strategy. The second one – overlapping
subproblems – is also shown in (6). If we are computing a recursively, we have
to compute first a[0] (recursively). Then we have to compute a[1] (recursively)
and this will imply computing of a[0] again.

To apply the dynamic-programming strategy we will replace the recursion
by an iteration and will compute the vector a ”bottom-up”. The main idea can
be drawn from last two equalities – if we make one more step, expressing Mn−1

by Mn−2 and replacing a[0] by (a[00], a[01]), a[1] by (a[10], a[11]), b[0] by (b[00], b[01]),
b[1] by (b[10], b[11]), and so on. We conclude that the iteration should perform n
steps. Starting from the vector b (as an input), at k-th step, k = 1, 2, . . . , n, we
consider the current vector b as divided into two kinds of blocks: source and
target, which alternate with each other. All they have a size, equal to 2k−1. At
each step, every source block is added (by a component-wise XOR) to the next
block, which is its target block. The result is assigned to the current vector b.
So, after these n steps, the vector b is transformed to the vector a. Assuming
that the vector b is represented by an array b of 2n bytes, the pseudo code of
this algorithm is:

Binary_PPRM (b, n)
1) blocksize = 1;
2) for k = 1 to n do 3) source = 0; //start of the source block
4) while source < 2^n do
5) target = source + blocksize; //start of the target block
6) for i = 0 to blocksize - 1 do

//component-wise XOR over current blocks
7) b[target + i] = b[target + i] XOR b[source + i];
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//start of the next source block
8) source = source + 2 * blocksize;
9) blocksize = 2 * blocksize;
10) return b; //b is transformed to a

The correctness of the algorithm can be proved easily by induction on n.
In its k-th step, 1 ≤ k ≤ n, there are 2n−k source blocks and so many target
blocks, each of size 2k−1. The algorithm adds (XORs) these source blocks to
the corresponding target blocks, and so it performs 2k−1.2n−k = 2n−1 XORs in
the k-th step. Therefore, when the input size is 2n, the algorithm has a time
complexity Θ(n.2n−1) and Θ(2n) space complexity. They are many times better
than the corresponding complexities, which we shall obtain if we generate the
matrix Mn and compute directly the matrix-vector multiplication, given by Eq.
(3).

Now we discuss a new version of the given algorithm, obtained by applying
a bit-wise representation of the vector b and bit-wise operations. Let d = 2j

be the size (in bits) of the computer word. Then m =
⌈
2n−j

⌉
computer words

are sufficient to represent the vector b. For simplicity, let n = j (i.e. m = 1),
and we denote by B the representation of b as a binary number. We use an
additional integer temp, initialized by temp = B. In temp we set the values
in the target blocks to zero – i.e. we mask them by zeros, and the values
in the source blocks we remain the same – we mask them by ones. For that
purpose, in the k-th step (k = 1, 2, . . . n) we should use a mask: mask[k]=
11 . . . 1︸ ︷︷ ︸

2k−1

00 . . . 0︸ ︷︷ ︸
2k−1

· · · 11 . . . 1︸ ︷︷ ︸
2k−1

00 . . . 0︸ ︷︷ ︸
2k−1

, where 2k−1 is the block size. After that, we

”shift right” them by 2k−1 positions and so the source blocks are moved to
the places of the target blocks, corresponding to them. Finally, we compute a
bit-wise XOR between B and temp and store the result in B. So, the body of
the main cycle in row 2 of the given above pseudo code (i.e. the rows 3, 4,. . . ,
9) could be replaced by:

3) temp = B AND mask[k]; //masks the blocks;
4) temp = temp SHR blocksize; //shift right
5) B = B XOR temp; //XOR between all blocks.
6) blocksize = blocksize SHL 1; //double the blocksize

We have only four bit-wise operations, repeated n times. Therefore the time
complexity of this version of the algorithm is Θ(n). The array mask consists
of n computer words and they can be pre-computed once in Θ(n2) time and
not considered as a part of algorithm. When n > j then m = 2n−j > 1
words of memory will be necessary. In this case, during the steps 1, 2, . . . , j,
the instructions 3, 4 and 5 of the algorithm will be executed for each word
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separately. During the steps j +1, j +2, . . . , n the masks are no more necessary,
because the blocks are composed of whole words. In such way only m/2 XOR
operations will be necessary on each of these steps. Finally, the time complexity
becomes Θ(m.n) generally, which is the best one, known to us.

To compare these two versions we have generated all Boolean functions of 5
variables and perform the PPRM transform over each of them. When the new
version of the algorithm uses a 32-bit computer word and generates the masks
only once, it runs 22 times faster.

3 Ternary PPRM transform

The ternary FPRM and some other transforms are investigated intensively by
Falkowski, Fu, etc. [2, 3, 4, 5]. These transforms are determined by the corre-
sponding matrices, defined recursively or by Kronecker product. These matrices
are used for building recursive algorithms, performing these expansions. Com-
puting of the ternary PPRM transform is an important part for some of them
or for other fast algorithms [4]. Let f(xn−1, xn−2, . . . , x0) be a ternary func-
tion, represented by its vector of values b = (b0, b1, . . . , b3n−1). Analogously to
the binary case, the ternary forward PPRM transform between the coefficient
vector a = (a0, a1, . . . , a3n−1) and the vector b is defined by the 3n × 3n matrix
Tn as follows [2, 3, 4]:

aT = Tn.bT over GF (3). (7)

The matrix Tn is defined recursively, or by Kronecker product:

T1 =




1 0 0
0 2 1
2 2 2


 , Tn =




Tn−1 On−1 On−1

On−1 2.Tn−1 Tn−1

2.Tn−1 2.Tn−1 2.Tn−1


 , or Tn = T1 ⊗ Tn−1 =

n⊗

i=1

T1, (8)

where Tn−1 is the corresponding transform matrix of dimension 3n−1 × 3n−1,
and On−1 is a 3n−1× 3n−1 zero matrix. It is easy to see that Tn 6= T−1

n , and so
the forward and inverse ternary PPRM transforms do not coincide.

Let v be a vector, v ∈ {0, 1, 2}3n
. We consider each position of v labeled

with the corresponding vector of {0, 1, 2}n, so that the labels are ordered lexi-
cographically. Let the vector α ∈ {0, 1, 2}k and 1 ≤ k < n. We denote by v[α]

the sub-vector of these positions in v, first k-coordinates of labels of which are
fixed to α. Using Eq. (8), we rewrite Eq. (7) as:

aT = Tn.bT =




Tn−1 On−1 On−1

On−1 2.Tn−1 Tn−1

2.Tn−1 2.Tn−1 2.Tn−1







bT
[0]

bT
[1]

bT
[2]


 = (9)

=




Tn−1.bT
[0]

2.Tn−1.bT
[1]

+ Tn−1.bT
[2]

2.Tn−1.bT
[0]

+2.Tn−1.bT
[1]

+2.Tn−1.bT
[2]


 =




aT
[0]

aT
[1]

aT
[2]


 over GF (3),
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Therefore:

aT
[0] = Tn−1.b

T
[0]

aT
[1] = 2.Tn−1.b

T
[1] + Tn−1.b

T
[2]

aT
[2] = 2.(Tn−1.b

T
[0] + Tn−1.b

T
[1] + Tn−1.b

T
[2])

(10)

The last equalities determine the solution recursively. The reasons to apply
the dynamic-programming strategy are the same as in the binary case. The
final solution can be obtained by the solutions of its subproblems (i.e. when
the matrix-vector multiplications of the type Tn−1.b

T
[i] are already computed)

by 3 additions of vectors and 2 multiplications of vector by a scalar in GF (3).
Thinking about them as source and target blocks, we shall replace them by
4 additions between blocks in GF (3), as it is shown in Fig. 1, for n = 1.
Obviously, some source and target blocks (of size 1, when n = 1) change their
roles.

Figure 1: For n = 1, vector b is transformed to vector a by 4 additions in
GF (3).

The same model of computing will be valid if we expand the equalities
(9) and (10) completely for n = 2. In the first step we apply the scheme of
additions in Fig. 1 for each of sub-vectors b[0], b[1] and b[2]. In the second step
we consider the resulting sub-vectors as blocks of size 3, labeled by 0, 1, and
2, respectively. We compute component-wise additions between the blocks,
following the scheme in Fig. 1 and so we obtain the vector a.

We can extend this model of computing for an arbitrary n. Thus we obtain
an algorithm, which starts from the given vector b (as an input) and performs
n steps. At each step, the current vector b (as a result of a previous step)
is divided into blocks of size 3k−1, where k is the number of the step. The
blocks are labeled by 0, 1, . . . , 3n−k+1. For each triple of consecutive blocks the
algorithm performs component-wise additions (in GF (3)) between the blocks
in the triple, following the scheme in Fig. 1. So, before the last step, the sub-
vectors (blocks) Tn−1.b

T
[i], labeled by i = 0, 1, 2, are already computed. In the

last step, the algorithm performs the additions between the blocks in the last
triple, as they are given in Fig. 1, and so it obtains the vector a. If the vector
b is represented by an array b of 3n bytes, the pseudo code of this algorithm is:



20 ACCT2008

Ternary_PPRM (b, n)
1) blocksize = 1;
2) for k = 1 to n do
3) base = 0; //start of the 0-blocks in a current triple
4) while base < 3^n do
5) first = base + blocksize; //start of 1-block
6) second = first + blocksize; //start of 2-block
7) AddBlock(first,second,blocksize ); //adds 1-bl. to 2-bl.
8) AddBlock(second,first,blocksize ); //adds 2-bl. to 1-bl.
9) AddBlock(base,second,blocksize ); //adds 0-bl. to 2-bl.
10) AddBlock(second,second,blocksize ); //adds 2-bl. to itself
11) base = base + 3*blocksize; //start next triple
12) blocksize= 3*blocksize;
13) return b; //b is transformed to a

Procedure AddBlock (s, t, size) adds the block (sub-vector), starting
from coordinate s, to the block, starting from coordinate t. It performs size
component-wise additions by a table look-up (of additions in GF (3)), since this
is faster than modular arithmetic.

The arguments above the pseudo code and equalities (9) and (10) imply
the correctness of the algorithm. Following them, it can be proved strongly
by induction on n. The space complexity of the algorithm is Θ(3n), the same
as the size of input. Its time complexity is derived easily. In the k-th step,
1 ≤ k ≤ n, the size of the blocks is 3k−1, and for each triple of blocks the
algorithm performs 4.3k−1 additions. There are 3n/(3.3k−1) = 3n−k triples,
and so the additions in the k-th step are 4.3k−1.3n−k = 4.3n−1. Therefore the
time complexity is Θ(n.3n−1). For comparison, in [4] the authors refer to an
algorithm for fast computing of ternary PPRM transform, which performs n.3n

additions and 4n.3n−1 multiplications.
The matrix T−1

n can be expressed by equalities analogous to these in (8),
hence the inverse transform can be performed in way, similar to the performing
of forward transform.

4 Conclusions

Here we have used the dynamic-programming strategy to develop three algo-
rithms. They are based on matrices, defined recursively or by Kronecker prod-
uct, which determine the PPRM transforms over GF (2) and GF (3). The model
of building the given algorithms can be extended and applied for fast computing
of other FPRM expansions over the considered fields, for other finite fields with
prime number of elements, or for fast computing of matrix-vector multiplication
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when the matrix is defined recursively. Proposed algorithms have better time
complexities in comparison with other algorithms, known to us.
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