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A note on a result by Hamada on minihypers
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Abstract. Hamada [Bull. Osaka Women’s Univ. 24:1-47, 1985; Discrete Math.
116:229-268, 1993| characterized the non-weighted minihypers having parameters
(ZLI v,\i+1,2?’:1 vx;3t,q) with £ > A1 > Ag > -+ > A, > 0. This result has been
generalized in [Des. Codes Cryptogr. 45:123-138,2007] where it was proved that a
weighted (320, v, 41, Yo, U3 1, g)-minihyper §, with k —1 > Ay > Xo > --- >
An > 0, is a sum of the characteristic functions of spaces of dimension Ai,...,Ap.
In this note, we prove that we can relax further the restrictions on the integers \;
by allowing r(q) — 1 equalities in the chain of strict inequalities Aa > ... > Ap.

1 Introduction

Let PG(t, ¢) be the t-dimensional projective space over [F,. Denote by P the set
of points of the projective geometry PG(t,q) and let v;41 = (¢! —1)/(¢ — 1)
denote the cardinality of P. A multiset in PG(t, q) is any mapping 8: P — N,
where Ny is the set of all nonnegative integers. This mapping is extended in
a natural way to the subsets of P (the extension is also denoted by RK) by
R(Q) = > pcg A(P) where @ C P. The integer &(Q) is called the multiplicity
of Q. The cardinality of a multiset is defined by |[R] = K(P). The support
supp R of a multiset & is defined as suppR = {P € P | R(P) > 0}. A multiset
with R(P) € {0,1} for every P € P is called a non-weighted or projective
multiset. Projective multisets can be viewed as sets by identifying them with
their support.

Let Q be a set of points in PG(t,q). We define the characteristic multiset
xg by

1 ifPeg,

XQ(P):{ 0 ifPgQ.

Definition 1. A multiset § in PG(t,q), t > 2, is called an (f, m;t, q)-minihyper
or (f, m)-minihyper if
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(a) 3(P) = f;
(b) F(H) > m for any hyperplane H;
(c) there exists a hyperplane Hy with §(Hy) = m.

This definition of a minihyper is equivalent to the original one given by
Hamada and Tamari in [3]|. In order to save space, we refer to [4] for all notions
that are not defined here.

In [1] and |2], Hamada characterized the non-weighted minihypers with pa-
rameters (Z?:l U415 2?21 vxtg) With &€ > A > Ag > --- > X\ > 0, as
the union of a A\i-dimensional space, Ao-dimensional space, ..., Ap-dimensional
space, which all are pairwise disjoint. In [4], this result was extended to weighted
minihypers.

Theorem 1. Let § be a (Z?:l U415 Z?Zl v,; b, q)-manthyper, with t > 2, q >
3, and
t>XA >A>...> ), >0.

Then
h
S = Z Xmis
i=1
where m; is a A\i-dimensional subspace of PG(t,q), i =1,..., h.

In this note, we show that we can relax the restrictions on the numbers \;
by allowing some of them to be equal. We prove the following theorem.

Theorem 2. Let t > 2 be an integer and let ¢ > 3 be a prime power. Let
A, ..., Ap be a sequence of non-negative integers such that

(])t>)\1>)\22)\32...2)\h20, and

(2) equalities in (1) occur in at most r(q) — 1 places, where g+ 1+ r(q) is the
size of the smallest nontrivial blocking set in PG(2,q).

Then every minihyper § in PG(t, q) with parameters (Z?:1 UN,415 Z?Zl vy;) can
be represented as

h
g = ZXT(“
=1

where m; is a A\i-dimensional subspace of PG(t,q), i =1,...,h.
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2 The proof of Theorem 2

For the proof of our characterization result, we use induction on ¢ and h. The
theorem is obviously true for h = 1 for every ¢t and for ¢t = 2 for all h < t+r(g)—1.
Note that for t = 2, our statement follows by the definition of r(¢q), namely, every
blocking set with less than ¢ + 7(¢) + 1 points contains a line in its support.

Lemma 3. Let the integers t,q, \1, ..., Ap satisfy the conditions of Theorem 2.
Let further § be a (Z?:l Un+1, Z?:l vz,; b, q)-manthyper. Then supp § contains
a A1-dimensional subspace of PG(t,q).

The proof of this fact follows mutatis mutandis the proof of Lemma 17 from
4]

Now we assume that Theorem 2 is proved for all dimensions up to ¢ty — 1 for
all possible h, and for dimension ty for all (Ziil Ux;+1, Zi‘;l vy, )-minihypers
with t > A > Xy > A3 > ... > X} > 0, where A/ < hg. We want to prove
that theorem for minihypers for which the sums in the parameters contain hg
summands.

An easy counting argument shows that for a subspace S of codimension s

3(5) ZUn—st1 ...+ Uy —s+1-

Here, v, = 0 for a < 0. Hence the minimal multiplicity of a subspace S of
dimension ¢y — 2 (codimension 2) is vy, -1 + ... + Vg —1 and all hyperplanes
through S are also of minimal multiplicity vy, + ... + Uy -

(1) Assume that \; < tg — 1. Then each hyperplane contains a 0-point.
Consider a projection ¢ from an arbitrary O-point P onto a hyperplane A.
The induced minihyper §¥ in A = PG(ty — 1,q) has the parameters of F:
(o, VI S0 wy,). By the induction hypothesis

8 =Xo X6 -+ Xay (1)

where §; is a subspace of A with dimd; = A;, ¢ =1,..., hg.
The support of § contains a Aj-dimensional subspace 1 (cf. Lemma 3). Set
§ =8 — Xx,- Let H be a hyperplane that contains 7;. Consider a projection
from a O-point P in H. Clearly, §¥ has the form (1). The image of 71 under ¢
is exactly ;. Thus
87 = Xoo + - F Xoy, -

This implies that

13,/([—[) :g/@(Hl) = V), +...+v>\h0.
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Let H be a hyperplane that does not contain 7. Now H meets 7 in a
(A1 — 1)-dimensional subspace and again

F(H)=F(H)—|m NH|=FH)— vy, 2> Uny F e UN,

Hence ¥ is a (2?22 Uhipss 2?22 vy, )-minihyper in PG(tg, ¢). By the induction
hypothesis, § = xm + ... + X where dim m; are A;-dimensional subspaces
of PG(to, q), 1= 2, ey ho.

(2) Let A\; = to — 1. Again by Lemma 3, we have that supp§ contains a
A1-space, i.e. a hyperplane . Define the multiset §' = § — xn,. For each
hyperplane H # m; we have §'(H) > vy, + ...+ vy,. Now it is enough to
demonstrate that

3/(7&) > U, —i—...—f—v)\h.

This will imply that §’ is a (2?22 U +1, Z?:z vy, )-minihyper and the result will
follow by induction.

Fix a (t9 — 2)-dimensional subspace § of PG(tg,q) of minimal multiplicity.
Denote by II;, ¢ = 0, ..., g, the hyperplanes through 6. All these hyperplanes are
also of minimal multiplicity: F(II;) = Z?Zl vy,. By the induction hypothesis,
the restriction of § to every II; is a sum of subspaces:

Sln, = Xal) X F o X0

where dimwl(j) =XN—1,¢=1,...,hg, j = 0,...,q. Note that the indices
i € {1,...,hp} can be chosen in such way that the subspaces 7ri(j) meet J in
the same (\; — 2)-dimensional subspace. This follows by the fact that § is of
() :

minimal multiplicity. In other words, we can arrange the subspaces m;”’ in such

way that

dOns=rns=...=x9n6=6, i=12,...,h
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Now we can write

q
§ = Zmnj—qma
h
ZXWO) —QZXa
=1
Xp ) —QZXa

I
M= T
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Il
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I
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MQ

w
Il
—
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Il
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X (J)

s
I
—

I
M:

I
M=
&

.
Il
—

where we have set &; = E?:o X () — 4Xs;- It is known that &; = x,, which
implies that § = 2?22 ®;.

Let us fix an integer ¢ € {2,...,h}. First, we consider the case when J; is
not contained d1. In this case,

q
= Y mna?| —|mng
]:

= ( )’U)\ifl - qv)\i72

Now suppose that ¢; is a subspace of §;. Fix a (¢t — 3)-dimensional subspace
09 of & that has minimal multiplicity. We have dy # d1 since 1 is not of

minimal multiplicity. Denote by 7i,...,7, the (ty — 2)-dimensional subspaces
of IIy through dp other than 0. Since at most 7(q) — 1 of the subspaces 7; are
not minimal (this happens when Ay, _y(g)42 = ... = Ap, = 1), we can assume

with no loss of generality that 7 is minimal, i.e. (7)) = 2?21 vy, N 7r(]),
i =2,...,h,is not contained in 7 for some j, we can repeat the above argument
to show that &;(m) > vy, .

Now assume that 7 N 7ri(0)

(0)

is in my. Clearly, 71 N7,
(0

0; since otherwise § would coincide with 71. Hence m; contains other points

does not coincide with
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(apart from 6;) that are from ;. This implies that ﬂo) is contained completely

in m. Now we have that

q .
®;(m) = Z |1 N 7TZ-(J)| —qlm N >|m N 71'1(0)| = |7Tl-(0)\ = v),.
=0

Thus we have proved that in all cases &;(m1) > v),. Now we have

h h

F(m) =) 6i(m) = u,
i=2

=2

which finishes the proof.

References

[1] N. Hamada, Characterization of minihypers in a finite projective geometry
and its applications to error-correcting codes, Bull. Osaka Women’s Univ
24, 1985, 1-47.

[2] N. Hamada, A characterization of some [n, k, d; ¢]-codes meeting the Gries-
mer bound using a minihyper in a finite projective geometry, Discr. Math.
116, 1993, 229-268.

[3] N. Hamada, F. Tamari, On a geometrical method of construction of maxi-
mal t-linearly independent sets, J. Combin. Theory, Ser. A 25, 1978, 14-28.

[4] I. Landjev, L. Storme, A weighted version of a result by Hamada on minihy-
pers and on linear codes meeting the Griesmer bound, Des., Codes Crypt.
45, 2007, 123-138.



