A note on a result by Hamada on minihypers

IVAN LANDJEVivan@math.bas.bgInstitute of Mathematics and Informatics Bulgarian Academy of Sciences,8 G. Bonchev str., 1113 Sofia, BULGARIANew Bulgarian University, 21 Montevideo str., 1618 Sofia, BULGARIAASSIA ROUSSEVAassia@fmi.uni-sofia.bgFaculty of Mathematics and Informatics, Sofia University,5 L

5 James Bouchier blvd, 1164 Sofia, BULGARIA

Abstract. Hamada [Bull. Osaka Women's Univ. 24:1–47, 1985; Discrete Math. 116:229-268, 1993] characterized the non-weighted minihypers having parameters $(\sum_{i=1}^{h} v_{\lambda_i+1}, \sum_{i=1}^{h} v_{\lambda_i}; t, q)$ with $t > \lambda_1 > \lambda_2 > \cdots > \lambda_h \ge 0$. This result has been generalized in [Des. Codes Cryptogr. 45:123-138,2007] where it was proved that a weighted $(\sum_{i=1}^{h} v_{\lambda_i+1}, \sum_{i=1}^{h} v_{\lambda_i}; t, q)$ -minihyper \mathfrak{F} , with $k - 1 > \lambda_1 > \lambda_2 > \cdots > \lambda_h \ge 0$, is a sum of the characteristic functions of spaces of dimension $\lambda_1, \ldots, \lambda_h$. In this note, we prove that we can relax further the restrictions on the integers λ_i by allowing r(q) - 1 equalities in the chain of strict inequalities $\lambda_2 > \ldots > \lambda_h$.

1 Introduction

Let $\mathrm{PG}(t,q)$ be the t-dimensional projective space over \mathbb{F}_q . Denote by \mathcal{P} the set of points of the projective geometry $\mathrm{PG}(t,q)$ and let $v_{t+1} = (q^{t+1} - 1)/(q - 1)$ denote the cardinality of \mathcal{P} . A multiset in $\mathrm{PG}(t,q)$ is any mapping $\mathfrak{K} \colon \mathcal{P} \to \mathbb{N}_0$, where \mathbb{N}_0 is the set of all nonnegative integers. This mapping is extended in a natural way to the subsets of \mathcal{P} (the extension is also denoted by \mathfrak{K}) by $\mathfrak{K}(\mathcal{Q}) = \sum_{P \in \mathcal{Q}} \mathfrak{K}(P)$ where $\mathcal{Q} \subseteq \mathcal{P}$. The integer $\mathfrak{K}(\mathcal{Q})$ is called the multiplicity of \mathcal{Q} . The cardinality of a multiset is defined by $|\mathfrak{K}| = \mathfrak{K}(\mathcal{P})$. The support supp \mathfrak{K} of a multiset \mathfrak{K} is defined as supp $\mathfrak{K} = \{P \in \mathcal{P} \mid \mathfrak{K}(P) > 0\}$. A multiset with $\mathfrak{K}(P) \in \{0,1\}$ for every $P \in \mathcal{P}$ is called a non-weighted or projective multiset. Projective multisets can be viewed as sets by identifying them with their support.

Let \mathcal{Q} be a set of points in $\mathrm{PG}(t,q)$. We define the characteristic multiset $\chi_{\mathcal{Q}}$ by

$$\chi_{\mathcal{Q}}(P) = \begin{cases} 1 & \text{if } P \in \mathcal{Q}, \\ 0 & \text{if } P \notin \mathcal{Q}. \end{cases}$$

Definition 1. A multiset \mathfrak{F} in PG(t,q), $t \ge 2$, is called an (f,m;t,q)-minihyper or (f,m)-minihyper if

(a) $\mathfrak{F}(\mathcal{P}) = f;$

- (b) $\mathfrak{F}(H) \geq m$ for any hyperplane H;
- (c) there exists a hyperplane H_0 with $\mathfrak{F}(H_0) = m$.

This definition of a minihyper is equivalent to the original one given by Hamada and Tamari in [3]. In order to save space, we refer to [4] for all notions that are not defined here.

In [1] and [2], Hamada characterized the non-weighted minihypers with parameters $(\sum_{i=1}^{h} v_{\lambda_i+1}, \sum_{i=1}^{h} v_{\lambda_i}; t, q)$ with $t > \lambda_1 > \lambda_2 > \cdots > \lambda_h \ge 0$, as the union of a λ_1 -dimensional space, λ_2 -dimensional space, \ldots , λ_h -dimensional space, which all are pairwise disjoint. In [4], this result was extended to weighted minihypers.

Theorem 1. Let \mathfrak{F} be a $(\sum_{i=1}^{h} v_{\lambda_i+1}, \sum_{i=1}^{h} v_{\lambda_i}; t, q)$ -minihyper, with $t \geq 2, q \geq 3$, and

$$t > \lambda_1 > \lambda_2 > \ldots > \lambda_h \ge 0$$

Then

$$\mathfrak{F} = \sum_{i=1}^{h} \chi_{\pi_i},$$

where π_i is a λ_i -dimensional subspace of PG(t,q), i = 1, ..., h.

In this note, we show that we can relax the restrictions on the numbers λ_i by allowing some of them to be equal. We prove the following theorem.

Theorem 2. Let $t \ge 2$ be an integer and let $q \ge 3$ be a prime power. Let $\lambda_1, \ldots, \lambda_h$ be a sequence of non-negative integers such that

- (1) $t > \lambda_1 > \lambda_2 \ge \lambda_3 \ge \ldots \ge \lambda_h \ge 0$, and
- (2) equalities in (1) occur in at most r(q) 1 places, where q + 1 + r(q) is the size of the smallest nontrivial blocking set in PG(2,q).

Then every minihyper \mathfrak{F} in $\mathrm{PG}(t,q)$ with parameters $(\sum_{i=1}^{h} v_{\lambda_i+1}, \sum_{i=1}^{h} v_{\lambda_i})$ can be represented as

$$\mathfrak{F} = \sum_{i=1}^{h} \chi_{\pi_i},$$

where π_i is a λ_i -dimensional subspace of PG(t,q), i = 1, ..., h.

Landjev, Rousseva

2 The proof of Theorem 2

For the proof of our characterization result, we use induction on t and h. The theorem is obviously true for h = 1 for every t and for t = 2 for all $h \le t+r(q)-1$. Note that for t = 2, our statement follows by the definition of r(q), namely, every blocking set with less than q + r(q) + 1 points contains a line in its support.

Lemma 3. Let the integers $t, q, \lambda_1, \ldots, \lambda_h$ satisfy the conditions of Theorem 2. Let further \mathfrak{F} be a $(\sum_{i=1}^h v_{\lambda_i+1}, \sum_{i=1}^h v_{\lambda_i}; t, q)$ -minihyper. Then supp \mathfrak{F} contains a λ_1 -dimensional subspace of $\mathrm{PG}(t, q)$.

The proof of this fact follows *mutatis mutandis* the proof of Lemma 17 from [4].

Now we assume that Theorem 2 is proved for all dimensions up to $t_0 - 1$ for all possible h, and for dimension t_0 for all $(\sum_{i=1}^{h'} v_{\lambda_i+1}, \sum_{i=1}^{h'} v_{\lambda_i})$ -minihypers with $t > \lambda_1 > \lambda_2 \ge \lambda_3 \ge \ldots \ge \lambda'_h \ge 0$, where $h' < h_0$. We want to prove that theorem for minihypers for which the sums in the parameters contain h_0 summands.

An easy counting argument shows that for a subspace S of codimension s

$$\mathfrak{F}(S) \ge v_{\lambda_1 - s + 1} + \ldots + v_{\lambda_{h_0} - s + 1}.$$

Here, $v_{\alpha} = 0$ for $\alpha < 0$. Hence the minimal multiplicity of a subspace S of dimension $t_0 - 2$ (codimension 2) is $v_{\lambda_1-1} + \ldots + v_{\lambda_{h_0}-1}$ and all hyperplanes through S are also of minimal multiplicity $v_{\lambda_1} + \ldots + v_{\lambda_{h_0}}$.

(1) Assume that $\lambda_1 < t_0 - 1$. Then each hyperplane contains a 0-point. Consider a projection φ from an arbitrary 0-point P onto a hyperplane Δ . The induced minihyper \mathfrak{F}^{φ} in $\Delta \cong \mathrm{PG}(t_0 - 1, q)$ has the parameters of $\mathfrak{F}:$ $(\sum_{i=1}^{h_0} v_{\lambda_{i+1}}, \sum_{i=1}^{h_0} v_{\lambda_i})$. By the induction hypothesis

$$\mathfrak{F}^{\varphi} = \chi_{\delta_1} + \chi_{\delta_2} + \ldots + \chi_{\delta_{h_0}},\tag{1}$$

where δ_i is a subspace of Δ with dim $\delta_i = \lambda_i$, $i = 1, \ldots, h_0$.

The support of \mathfrak{F} contains a λ_1 -dimensional subspace π_1 (cf. Lemma 3). Set $\mathfrak{F}' = \mathfrak{F} - \chi_{\pi_1}$. Let H be a hyperplane that contains π_1 . Consider a projection from a 0-point P in H. Clearly, \mathfrak{F}^{φ} has the form (1). The image of π_1 under φ is exactly δ_1 . Thus

$$\mathfrak{F}'^{\varphi} = \chi_{\delta_2} + \ldots + \chi_{\delta_{h_0}}.$$

This implies that

$$\mathfrak{F}'(H) = \mathfrak{F}'^{\varphi}(H') = v_{\lambda_2} + \ldots + v_{\lambda_{h_0}}.$$

Let *H* be a hyperplane that does not contain π_1 . Now *H* meets π_1 in a $(\lambda_1 - 1)$ -dimensional subspace and again

$$\mathfrak{F}'(H) = \mathfrak{F}(H) - |\pi_1 \cap H| = \mathfrak{F}(H) - v_{\lambda_1} \ge v_{\lambda_2} + \ldots + v_{\lambda_{h_0}}.$$

Hence \mathfrak{F}' is a $(\sum_{i=2}^{h_0} v_{\lambda_{i+1}}, \sum_{i=2}^{h_0} v_{\lambda_i})$ -minihyper in $\mathrm{PG}(t_0, q)$. By the induction hypothesis, $\mathfrak{F}' = \chi_{\pi_2} + \ldots + \chi_{\pi_{h_0}}$, where dim π_i are λ_i -dimensional subspaces of $\mathrm{PG}(t_0, q)$, $i = 2, \ldots, h_0$.

(2) Let $\lambda_1 = t_0 - 1$. Again by Lemma 3, we have that $\operatorname{supp} \mathfrak{F}$ contains a λ_1 -space, i.e. a hyperplane π_1 . Define the multiset $\mathfrak{F}' = \mathfrak{F} - \chi_{\pi_1}$. For each hyperplane $H \neq \pi_1$ we have $\mathfrak{F}'(H) \geq v_{\lambda_2} + \ldots + v_{\lambda_h}$. Now it is enough to demonstrate that

$$\mathfrak{F}'(\pi_1) \ge v_{\lambda_2} + \ldots + v_{\lambda_h}.$$

This will imply that \mathfrak{F}' is a $(\sum_{i=2}^{h} v_{\lambda_i+1}, \sum_{i=2}^{h} v_{\lambda_i})$ -minihyper and the result will follow by induction.

Fix a $(t_0 - 2)$ -dimensional subspace δ of $\operatorname{PG}(t_0, q)$ of minimal multiplicity. Denote by Π_i , $i = 0, \ldots, q$, the hyperplanes through δ . All these hyperplanes are also of minimal multiplicity: $\mathfrak{F}(\Pi_j) = \sum_{i=1}^{h} v_{\lambda_i}$. By the induction hypothesis, the restriction of \mathfrak{F} to every Π_j is a sum of subspaces:

$$\mathfrak{F}|_{\Pi_j} = \chi_{\pi_1^{(j)}} + \chi_{\pi_2^{(j)}} + \ldots + \chi_{\pi_h^{(j)}},$$

where dim $\pi_i^{(j)} = \lambda_i - 1$, $i = 1, ..., h_0$, j = 0, ..., q. Note that the indices $i \in \{1, ..., h_0\}$ can be chosen in such way that the subspaces $\pi_i^{(j)}$ meet δ in the same $(\lambda_i - 2)$ -dimensional subspace. This follows by the fact that δ is of minimal multiplicity. In other words, we can arrange the subspaces $\pi_i^{(j)}$ in such way that

$$\pi_i^{(0)} \cap \delta = \pi_i^{(1)} \cap \delta = \ldots = \pi_i^{(q)} \cap \delta = \delta_i, \quad i = 1, 2, \ldots, h.$$

Now we can write

$$\begin{split} \mathfrak{F} &= \sum_{j=0}^{q} \mathfrak{F}|_{\Pi_{j}} - q\mathfrak{F}|_{\delta} \\ &= \sum_{j=0}^{q} \sum_{i=1}^{h} \chi_{\pi_{i}^{(j)}} - q \sum_{i=1}^{h} \chi_{\delta_{i}} \\ &= \sum_{i=1}^{h} \sum_{j=0}^{q} \chi_{\pi_{i}^{(j)}} - q \sum_{i=1}^{h} \chi_{\delta_{i}} \\ &= \sum_{i=1}^{h} \left(\sum_{j=0}^{q} \chi_{\pi_{i}^{(j)}} - q \chi_{\delta_{j}} \right) \\ &= \sum_{i=1}^{h} \mathfrak{G}_{i}, \end{split}$$

where we have set $\mathfrak{G}_i = \sum_{j=0}^q \chi_{\pi_i^{(j)}} - q\chi_{\delta_j}$. It is known that $\mathfrak{G}_1 = \chi_{\pi_1}$ which implies that $\mathfrak{F}' = \sum_{i=2}^h \mathfrak{G}_i$.

Let us fix an integer $i \in \{2, ..., h\}$. First, we consider the case when δ_i is not contained δ_1 . In this case,

$$\mathfrak{G}_{i}(\pi_{1}) = \sum_{j=0}^{q} |\pi_{1} \cap \pi_{i}^{(j)}| - |\pi_{1} \cap \delta_{i}|$$

= $(q+1)v_{\lambda_{i}-1} - qv_{\lambda_{i}-2}$
= $\frac{q^{\lambda_{i}} - 1}{q-1} = v_{\lambda_{i}}.$

Now suppose that δ_i is a subspace of δ_1 . Fix a (t-3)-dimensional subspace δ_0 of δ that has minimal multiplicity. We have $\delta_0 \neq \delta_1$ since δ_1 is not of minimal multiplicity. Denote by τ_1, \ldots, τ_q the $(t_0 - 2)$ -dimensional subspaces of Π_0 through δ_0 other than δ . Since at most r(q) - 1 of the subspaces τ_i are not minimal (this happens when $\lambda_{h_0-r(q)+2} = \ldots = \lambda_{h_0} = 1$), we can assume with no loss of generality that τ_1 is minimal, i.e. $\mathfrak{F}(\tau_1) = \sum_{i=1}^h v_{\lambda_i}$. If $\tau_1 \cap \pi_1^{(j)}$, $i = 2, \ldots, h$, is not contained in π_1 for some j, we can repeat the above argument to show that $\mathfrak{G}_i(\pi_1) \geq v_{\lambda_i}$.

Now assume that $\tau_1 \cap \pi_i^{(0)}$ is in π_1 . Clearly, $\tau_1 \cap \pi_i^{(0)}$ does not coincide with δ_i since otherwise δ would coincide with τ_1 . Hence $\pi_1^{(0)}$ contains other points

(apart from δ_i) that are from π_1 . This implies that $\pi_1^{(0)}$ is contained completely in π_1 . Now we have that

$$\mathfrak{G}_{i}(\pi_{1}) = \sum_{j=0}^{q} |\pi_{1} \cap \pi_{i}^{(j)}| - q |\pi_{1} \cap \delta_{i}| \ge |\pi_{1} \cap \pi_{i}^{(0)}| = |\pi_{i}^{(0)}| = v_{\lambda_{i}}.$$

Thus we have proved that in all cases $\mathfrak{G}_i(\pi_1) \geq v_{\lambda_i}$. Now we have

$$\mathfrak{F}'(\pi_1) = \sum_{i=2}^h \mathfrak{G}_i(\pi_1) \ge \sum_{i=2}^h v_{\lambda_i},$$

which finishes the proof.

References

- [1] N. Hamada, Characterization of minihypers in a finite projective geometry and its applications to error-correcting codes, *Bull. Osaka Women's Univ* 24, 1985, 1-47.
- [2] N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, *Discr. Math.* 116, 1993, 229-268.
- [3] N. Hamada, F. Tamari, On a geometrical method of construction of maximal *t*-linearly independent sets, *J. Combin. Theory*, Ser. A 25, 1978, 14-28.
- [4] I. Landjev, L. Storme, A weighted version of a result by Hamada on minihypers and on linear codes meeting the Griesmer bound, *Des.*, *Codes Crypt.* 45, 2007, 123-138.