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A note on a result by Hamada on minihypers
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Abstract. Hamada [Bull. Osaka Women’s Univ. 24:1–47, 1985; Discrete Math.
116:229-268, 1993] characterized the non-weighted minihypers having parameters
(
∑h

i=1 vλi+1,
∑h

i=1 vλi ; t, q) with t > λ1 > λ2 > · · · > λh ≥ 0. This result has been
generalized in [Des. Codes Cryptogr. 45:123-138,2007] where it was proved that a
weighted (

∑h
i=1 vλi+1,

∑h
i=1 vλi ; t, q)-minihyper F, with k − 1 > λ1 > λ2 > · · · >

λh ≥ 0, is a sum of the characteristic functions of spaces of dimension λ1, . . . , λh.
In this note, we prove that we can relax further the restrictions on the integers λi

by allowing r(q)− 1 equalities in the chain of strict inequalities λ2 > . . . > λh.

1 Introduction

Let PG(t, q) be the t-dimensional projective space over Fq. Denote by P the set
of points of the projective geometry PG(t, q) and let vt+1 = (qt+1 − 1)/(q − 1)
denote the cardinality of P. A multiset in PG(t, q) is any mapping K : P → N0,
where N0 is the set of all nonnegative integers. This mapping is extended in
a natural way to the subsets of P (the extension is also denoted by K) by
K(Q) =

∑
P∈Q K(P ) where Q ⊆ P. The integer K(Q) is called the multiplicity

of Q. The cardinality of a multiset is defined by |K| = K(P). The support
suppK of a multiset K is defined as suppK = {P ∈ P | K(P ) > 0}. A multiset
with K(P ) ∈ {0, 1} for every P ∈ P is called a non-weighted or projective
multiset. Projective multisets can be viewed as sets by identifying them with
their support.

Let Q be a set of points in PG(t, q). We define the characteristic multiset
χQ by

χQ(P ) =
{

1 if P ∈ Q,
0 if P 6∈ Q.

Definition 1. A multiset F in PG(t, q), t ≥ 2, is called an (f, m; t, q)-minihyper
or (f, m)-minihyper if
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(a) F(P) = f ;

(b) F(H) ≥ m for any hyperplane H;

(c) there exists a hyperplane H0 with F(H0) = m.

This definition of a minihyper is equivalent to the original one given by
Hamada and Tamari in [3]. In order to save space, we refer to [4] for all notions
that are not defined here.

In [1] and [2], Hamada characterized the non-weighted minihypers with pa-
rameters (

∑h
i=1 vλi+1,

∑h
i=1 vλi ; t, q) with t > λ1 > λ2 > · · · > λh ≥ 0, as

the union of a λ1-dimensional space, λ2-dimensional space, . . ., λh-dimensional
space, which all are pairwise disjoint. In [4], this result was extended to weighted
minihypers.

Theorem 1. Let F be a (
∑h

i=1 vλi+1,
∑h

i=1 vλi ; t, q)-minihyper, with t ≥ 2, q ≥
3, and

t > λ1 > λ2 > . . . > λh ≥ 0.

Then

F =
h∑

i=1

χπi ,

where πi is a λi-dimensional subspace of PG(t, q), i = 1, . . . , h.

In this note, we show that we can relax the restrictions on the numbers λi

by allowing some of them to be equal. We prove the following theorem.

Theorem 2. Let t ≥ 2 be an integer and let q ≥ 3 be a prime power. Let
λ1, . . . , λh be a sequence of non-negative integers such that

(1) t > λ1 > λ2 ≥ λ3 ≥ . . . ≥ λh ≥ 0, and

(2) equalities in (1) occur in at most r(q)− 1 places, where q + 1 + r(q) is the
size of the smallest nontrivial blocking set in PG(2, q).

Then every minihyper F in PG(t, q) with parameters (
∑h

i=1 vλi+1,
∑h

i=1 vλi) can
be represented as

F =
h∑

i=1

χπi ,

where πi is a λi-dimensional subspace of PG(t, q), i = 1, . . . , h.
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2 The proof of Theorem 2

For the proof of our characterization result, we use induction on t and h. The
theorem is obviously true for h = 1 for every t and for t = 2 for all h ≤ t+r(q)−1.
Note that for t = 2, our statement follows by the definition of r(q), namely, every
blocking set with less than q + r(q) + 1 points contains a line in its support.

Lemma 3. Let the integers t, q, λ1, . . . , λh satisfy the conditions of Theorem 2.
Let further F be a (

∑h
i=1 vλi+1,

∑h
i=1 vλi ; t, q)-minihyper. Then suppF contains

a λ1-dimensional subspace of PG(t, q).

The proof of this fact follows mutatis mutandis the proof of Lemma 17 from
[4].

Now we assume that Theorem 2 is proved for all dimensions up to t0− 1 for
all possible h, and for dimension t0 for all (

∑h′
i=1 vλi+1,

∑h′
i=1 vλi)-minihypers

with t > λ1 > λ2 ≥ λ3 ≥ . . . ≥ λ′h ≥ 0, where h′ < h0. We want to prove
that theorem for minihypers for which the sums in the parameters contain h0

summands.
An easy counting argument shows that for a subspace S of codimension s

F(S) ≥ vλ1−s+1 + . . . + vλh0
−s+1.

Here, vα = 0 for α < 0. Hence the minimal multiplicity of a subspace S of
dimension t0 − 2 (codimension 2) is vλ1−1 + . . . + vλh0

−1 and all hyperplanes
through S are also of minimal multiplicity vλ1 + . . . + vλh0

.
(1) Assume that λ1 < t0 − 1. Then each hyperplane contains a 0-point.

Consider a projection ϕ from an arbitrary 0-point P onto a hyperplane ∆.
The induced minihyper Fϕ in ∆ ∼= PG(t0 − 1, q) has the parameters of F:
(
∑h0

i=1 vλi+1 ,
∑h0

i=1 vλi). By the induction hypothesis

Fϕ = χδ1 + χδ2 + . . . + χδh0
, (1)

where δi is a subspace of ∆ with dim δi = λi, i = 1, . . . , h0.
The support of F contains a λ1-dimensional subspace π1 (cf. Lemma 3). Set

F′ = F − χπ1 . Let H be a hyperplane that contains π1. Consider a projection
from a 0-point P in H. Clearly, Fϕ has the form (1). The image of π1 under ϕ
is exactly δ1. Thus

F′ϕ = χδ2 + . . . + χδh0
.

This implies that

F′(H) = F′ϕ(H ′) = vλ2 + . . . + vλh0
.
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Let H be a hyperplane that does not contain π1. Now H meets π1 in a
(λ1 − 1)-dimensional subspace and again

F′(H) = F(H)− |π1 ∩H| = F(H)− vλ1 ≥ vλ2 + . . . + vλh0
.

Hence F′ is a (
∑h0

i=2 vλi+1
,
∑h0

i=2 vλi
)-minihyper in PG(t0, q). By the induction

hypothesis, F′ = χπ2 + . . . + χπh0
, where dim πi are λi-dimensional subspaces

of PG(t0, q), i = 2, . . . , h0.

(2) Let λ1 = t0 − 1. Again by Lemma 3, we have that suppF contains a
λ1-space, i.e. a hyperplane π1. Define the multiset F′ = F − χπ1 . For each
hyperplane H 6= π1 we have F′(H) ≥ vλ2 + . . . + vλh

. Now it is enough to
demonstrate that

F′(π1) ≥ vλ2 + . . . + vλh
.

This will imply that F′ is a (
∑h

i=2 vλi+1,
∑h

i=2 vλi)-minihyper and the result will
follow by induction.

Fix a (t0 − 2)-dimensional subspace δ of PG(t0, q) of minimal multiplicity.
Denote by Πi, i = 0, . . . , q, the hyperplanes through δ. All these hyperplanes are
also of minimal multiplicity: F(Πj) =

∑h
i=1 vλi . By the induction hypothesis,

the restriction of F to every Πj is a sum of subspaces:

F|Πj = χ
π

(j)
1

+ χ
π

(j)
2

+ . . . + χ
π

(j)
h

,

where dimπ
(j)
i = λi − 1, i = 1, . . . , h0, j = 0, . . . , q. Note that the indices

i ∈ {1, . . . , h0} can be chosen in such way that the subspaces π
(j)
i meet δ in

the same (λi − 2)-dimensional subspace. This follows by the fact that δ is of
minimal multiplicity. In other words, we can arrange the subspaces π

(j)
i in such

way that

π
(0)
i ∩ δ = π

(1)
i ∩ δ = . . . = π

(q)
i ∩ δ = δi, i = 1, 2, . . . , h.
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Now we can write

F =
q∑

j=0

F|Πj − qF|δ

=
q∑

j=0

h∑

i=1

χ
π

(j)
i

− q

h∑

i=1

χδi

=
h∑

i=1

q∑

j=0

χ
π

(j)
i

− q
h∑

i=1

χδi

=
h∑

i=1




q∑

j=0

χ
π

(j)
i

− qχδj




=
h∑

i=1

Gi,

where we have set Gi =
∑q

j=0 χ
π

(j)
i

− qχδj . It is known that G1 = χπ1 which

implies that F′ =
∑h

i=2 Gi.
Let us fix an integer i ∈ {2, . . . , h}. First, we consider the case when δi is

not contained δ1. In this case,

Gi(π1) =
q∑

j=0

|π1 ∩ π
(j)
i | − |π1 ∩ δi|

= (q + 1)vλi−1 − qvλi−2

=
qλi − 1
q − 1

= vλi
.

Now suppose that δi is a subspace of δ1. Fix a (t− 3)-dimensional subspace
δ0 of δ that has minimal multiplicity. We have δ0 6= δ1 since δ1 is not of
minimal multiplicity. Denote by τ1, . . . , τq the (t0 − 2)-dimensional subspaces
of Π0 through δ0 other than δ. Since at most r(q) − 1 of the subspaces τi are
not minimal (this happens when λh0−r(q)+2 = . . . = λh0 = 1), we can assume
with no loss of generality that τ1 is minimal, i.e. F(τ1) =

∑h
i=1 vλi

. If τ1 ∩ π
(j)
1 ,

i = 2, . . . , h, is not contained in π1 for some j, we can repeat the above argument
to show that Gi(π1) ≥ vλi

.
Now assume that τ1 ∩ π

(0)
i is in π1. Clearly, τ1 ∩ π

(0)
i does not coincide with

δi since otherwise δ would coincide with τ1. Hence π
(0
1 contains other points
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(apart from δi) that are from π1. This implies that π
(0)
1 is contained completely

in π1. Now we have that

Gi(π1) =
q∑

j=0

|π1 ∩ π
(j)
i | − q|π1 ∩ δi| ≥ |π1 ∩ π

(0)
i | = |π(0)

i | = vλi .

Thus we have proved that in all cases Gi(π1) ≥ vλi
. Now we have

F′(π1) =
h∑

i=2

Gi(π1) ≥
h∑

i=2

vλi ,

which finishes the proof.
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