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1 Preliminary results

The aim of this paper is to generalize the notion of a Rédei type blocking set to
projective Hjelmslev planes.

In what follows, we focus on Hjelmslev planes over chain rings of nilpotencey
index 2, i.e. chain rings with rad R 6= (0) and (rad R)2 = (0). Thus we have
always |R| = q2, where R/ rad R ∼= Fq. Chain rings with this property have
been classified in [1, 6]. If q = pr there are exactly r + 1 isomorphism classes of
such rings. These are:

• for every σ ∈ Aut Fq the ring Rσ
∼= Fq[X; σ]/(X2) of the so-called σ-dual

numbers over Fq with underlying set Fq × Fq, component-wise addition and
multiplication given by (x0, x1)(y0, y1) =

(
x0y0, x0y1 + x1y

σ
0

)
;

• the Galois ring GR(q2, p2) ∼= Zp2 [X]/(f(X)), where f(X) ∈ Zp2 [X] is a monic
polynomial of degree r, which is irreducible modulo p.

The rings Rσ with σ 6= id are noncommutative, while Rid is commutative.
We have also that char Rσ = p for every σ. The Galois ring GR(q2, p2) is
commutative and has characteristic p2. From now on we denote by R a finite
chain ring of nilpotency index 2.

In order to save space, we refer to [2, 3, 4] for the basic definitions and re-
sults about projective Hjelmslev planes over finite chain rings. We denote by
PHG(R3

R) the (right) projective Hjelmslev plane over the chain ring R. Simi-
larly, AHG(R2

R) denotes the (right) affine Hjelmslev plane over R.
Let Π = (P,L, I) be a projective Hjelmslev plane. Any mapping from the

pointset P to the nonnegative integers K : P → N0 is called a multiset in Π. The
integer K(P ), P ∈ P, is called the multiplicity of P . The mapping K induces a
mapping on the subsets of P by

K(Q) =
∑

P∈Q
K(P ), Q ⊆ P.
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The induced mapping is denoted again by K. The integer |K| = K(P) is called
the cardinality or the size of K. The support supp K of a multiset K is the set
of points of positive multiplicity: supp K = {P ∈ P | K(P ) > 0}.

Two multisets K′ and K′′ in the projective Hjelmslev plane Π are said to be
equivalent if there exists a collineation σ in Π such that K′(P ) = K′′(σ(P )) for
every point P ∈ P.
Definition 1.1. A multiset K in (P,L, I) is called a (k, n)-blocking multiset if

(i) K(P ) = k;

(ii) K(`) ≥ n for every line ` ∈ L;
(iii) there exists at least one line `0 with K(`0) = n.

A (k, n)-blocking multiset K is called reducible if there exists (k′, n)-blocking
multiset K′ with k′ < k and K′(P ) ≤ K(P ) for every point P ∈ P. A blocking
multiset that is not reducible is called irreducible.

A major problem is to determine the possible sizes of the irreducible blocking
sets in the planes PHG(R3

R), where R is a chain ring of nilpotency index 2. It is
known that the minimal size of a blocking set in PHG(R3

R), |R| = q2, is q2 + q.

2 Blocking sets of Rédei type in projective Hjelmslev
planes

Until the end of the paper R will be a chain ring of nilpotency index 2, i.e.
|R| = q2, R/ rad R ∼= Fq, where q is a prime power. We denote by Γ = {γ0 =
0, γ1 = 1, γ2, . . . , γq−1} a set of q elements of R no two of which are congruent
modulo rad R. By θ we denote an arbitrary element of rad R \ (0). The points
of the affine plane AHG(R2

R) are identified with the pairs (x, y), where x, y ∈ R.
The lines of AHG(R2

R) have equations Y = aX + b or X = c, a, b, c ∈ R. We
say that the lines of the first type have slope a. A line with equation X = c is
said to have slope ∞j , if c = γi + γjθ, j = 0, 1, . . . , q − 1.

The infinite points on a fixed line ` from the neighbor class of infinite lines
can be identified with the slopes. So, (a) (resp (∞j)) will denote the infinite
point from ` of the lines with slope (a) (resp (∞j)).

Definition 2.1. Let T be a set of q2 points in AHG(R2
R). We say that the

infinite point (a) is determined by T if there exist different points P, Q ∈ T such
that P,Q and (a) are collinear in PHG(R3

R).

Theorem 2.2. Assume T is a set of q2 points in AHG(R2
R). Denote by D the

set of infinite points determined by T . If |D| < q2 + q then B = T ∪ D is an
irreducible blocking set in PHG(R3

R).
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The proof of this theorem is obvious.
The construction given by this theorem yields blocking sets of size at most

2q2 + q − 1. It is straightforward that every irreducible blocking set of size
at most 2q2 + q − 1 with a line ` with |B \ `| = q2 can be obtained by this
construction.

Definition 2.3. A blocking set of size q2+m in PHG(R3
R) is said to be of Rédei

type if it has an m-secant. Such a line is called a Rédei line.

We are interested in sets T that are the graph of a function f : R → R. Such
sets can be written in the form

T = {(x, f(x)) | x ∈ R}.
Let x and y be two different elements from R We now have the following pos-
sibilities:

1) if x− y 6∈ rad R then (x, f(x)) and (y, f(y)) determine the point (a), where

(a) = (f(x)− f(y))(x− y)−1.

2) if x − y ∈ rad R \ {0}, and f(x) − f(y) 6∈ rad R the points (x, f(x)) and
(y, f(y)) determine the point (∞i) if

(x− y)(f(x)− f(y))−1 = θγi, γi ∈ Γ.

3) if x−y ∈ rad R\{0}, and f(x)−f(y) ∈ rad R, say x−y = θa, f(x)−f(y) =
θb, a, b ∈ Γ.

a) if b 6= 0, (x, f(x)) and (y, f(y)) determine all points (c) with c ∈ a/b +
rad R;

b) if b = 0, (x, f(x)) and (y, f(y)) determine the infinite points (∞0), . . . , (∞q).

Furthermore, for every set T of point of AHG(R2
R) of size q2 determining at

most q2 + q − 1 directions, we can always choose the coordinate system so that
T is the graph of a function from R to R.

3 Examples

Let R be a chain ring with |R| = q2, R/ rad R ∼= Fq that contains a proper
subring isomorphic to its residue field Fq Then R = Fq[θ; σ] for some σ ∈ Aut Fq.

It has been noted in [5] that PHG(R3
R) contains a subgeometry isomorphic

to PG(2, q) which is an irreducible blocking set with two intersection numbers.
As noted at the end of the previous section, this blocking set is of Rédei type.
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Below we give an explicit construction of this blocking set as a graph of a
function from R to R.

Define

f :
{

R → R
a + θb → b + θa

. (1)

We shall check that the set of points T = {(x, f(x)) | x ∈ R} determines q + 1
infinite points. Consider the points P = (a+θb, b+θa) and Q = (c+θd, d+θc),
a, b, c, d ∈ Γ = Fq.

1) Let a = c. Then b 6= d since otherwise P and Q would coincide. We have

x− y = θ(b− d), f(x)− f(y) = b− d.

Hence P and Q determine the infinite point (∞1).

2) Let a 6= c. We have

(f(x) − f(y))(x− y)−1 =
= ((b− d) + θ(a− c))((a− c) + θ(b− d))−1

= ((b− d) + θ(a− c))((a− c)−1 − θ(((a− c)σ)−1(b− d)(a− c)−1

= (b− d)(a− c)−1 − θ(b− d)σ((a− c)σ)−1(b− d)(a− c)−1.

Assume that P ′ = (a′ + θb′, b′ + θa′) and Q′ = (c′ + θd′, d′ + θc′) are two
point that determine an infinite point which is a neighbour to the infinite point
determined by P and Q. Then (b − d)(a − c)−1 = (b′ − d′)(a′ − c′)−1 which
implies that

(b− d)(a− c)−1 − θ(b− d)σ((a− c)σ)−1(b− d)(a− c)−1 =

(b′ − d′)(a′ − c′)−1 − θ(b′ − d′)σ((a′ − c′)σ)−1(b′ − d′)(a′ − c′)−1. (2)

Hence if P, Q on one side and P ′, Q′ on the other determine infinite points
that are neighbours, then they determine the same infinite point. Therefore,
the points of T determine at most one point in each neighbour class of infinite
points. On the other hand, (b − a)(c − d)−1 runs all elements of Fq (take,
for instance a = 1, c = d = 0, b free). Therefore exactly one infinite point is
determined in each neighbour class. Hence the points of T determine exactly
q + 1 directions.

It is known that the projective Hjelmslev plane PHG(R3
R), where R =

GR(q2, p2), does not contain a subplane isomorphic to PG(2, q). It is inter-
esting to know what are the parameters of the Rédei-type blocking sets given
by (1). Let us note that (1) depends on the choice of Γ. Let R = Zp2/(f(X)),
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where F is a monic polynomial of degree n ≥ 1, that is irreducible over Zp.
Then |R| = p2n and rad R = (p). If

Γ = {γ0 ∈ rad R, γ1 ∈ 1 + rad R, γ2, . . . , γq−1},
where γi − γj 6∈ rad R, for 0 ≤ i < j ≤ q − 1, it can be shown that the set
T determines exactly q2 − q + 2 directions and the size of the corresponding
Rédei-type blocking set is 2q2 − q + 2.

Let P = (a+bp, b+ap) and Q = (c+dp, d+cp), where a, b, c, d ∈ Γ. If a = c
and b 6= d, the points P and Q determine the infinite point (∞1). If a 6= c, they
determine the infinite point (α) with

α =
b− d

a− c
+

(
1− (b− d)2

(a− c)2

)
p. (3)

The number of different directions determined by the points of T is equal to
the different values taken by b−d

a−c , a 6= c. In the special case b = d, we have
(α) = (p).

Now we are going to prove that if for every α ∈ R \ rad R there exist
a, b, c, d ∈ Γ such that α(a − b) = c − d. Consider the elements αx + y where
x, y ∈ Γ. If {αx + y|x, y ∈ Γ} = R, there is nothing to prove. Otherwise, there
exist x1, x2, y1, y2 ∈ Γ, (x1, y1) 6= (x2, y2) such that

αx1 + y1 = αx2 + y2.

Hence α(x1 − x2) = y2 − y1. Since x1 − x2 ∈ rad R implies x1 = x2 and,
similarly, y1 − y2 ∈ rad R implies y1 = y2. If one of the differences x1 − x2,
y2−y1 is 0 then the other is also 0, which is a contradiction. Hence it is enough
to set a = x1, b = x2, c = y1, d = y2.
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