Double and bordered α -circulant self-dual codes over finite commutative chain rings

MICHAEL KIERMAIER, ALFRED WASSERMANN

michael.kiermaier, alfred.wassermann@uni-bayreuth.de Mathematical Department, University of Bayreuth, D-95440 Bayreuth, GERMANY

Abstract. In this paper we investigate codes over finite commutative rings R, whose generator matrices are built from α -circulant matrices. For a non-trivial ideal I < R we give a method to lift such codes over R/I to codes over R, such that some isomorphic copies are avoided. For the case where I is the minimal ideal of a finite chain ring we refine this lifting method: We impose the additional restriction that lifting preserves self-duality. It will be shown that this can be achieved by solving a linear system of equations over a finite field. Finally we apply this technique to \mathbb{Z}_4 -linear double nega-circulant and bordered circulant self-dual codes. We determine the best minimum Lee distance of these codes up to length 64.

1 α -circulant matrices

In this section, we give some basic facts on α -circulant matrices, compare with [4], where some theory of circulant matrices is given in chapter 16, and with [1], where α -circulant matrices are called $\{k\}$ -circulant on page 84.

Definition 1.1 Let R be a commutative ring, k a natural number and $\alpha \in R$. An $(k \times k)$ -matrix A is called α -circulant, if A has the form

$\begin{pmatrix} a_0 \end{pmatrix}$	a_1	a_2	 a_{k-2}	a_{k-1}
αa_{k-1}	a_0	a_1	 a_{k-3}	a_{k-2}
αa_{k-2}	αa_{k-1}	a_0	 a_{k-4}	a_{k-3}
÷	:	÷	•	÷
$\langle \alpha a_1 \rangle$	αa_2	αa_3	 αa_{k-1}	a_0

with $a_i \in R$ for $i \in \{0, ..., k - 1\}$. For $\alpha = 1$, A is called circulant, for $\alpha = -1$, A is called nega-circulant or skew-circulant, and for $\alpha = 0$, A is called semi-circulant.

An α -circulant matrix A is completely determined by its first row $v = (a_0, a_1, \ldots, a_{k-1}) \in \mathbb{R}^k$. We denote A by $\operatorname{circ}_{\alpha}(v)$ and say that A is the α -circulant matrix generated by v.

In the following, α usually will be a unit or even $\alpha^2 = 1$.

We define $T_{\alpha} = \operatorname{circ}_{\alpha}(0, 1, 0, \dots, 0)$, that is

$$T_{\alpha} = \begin{pmatrix} 1 & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \\ \alpha & & & \end{pmatrix}$$

Using T_{α} , there is another characterization of an α -circulant matrix: A matrix $A \in \mathbb{R}^{k \times k}$ is α -circulant iff $AT_{\alpha} = T_{\alpha}A$. This is seen directly by comparing the components of the two matrix products.

In the following it will be useful to identify the generating vectors $(a_0, a_1, \ldots, a_{k-1}) \in \mathbb{R}^n$ with the polynomials $\sum_{i=0}^{k-1} a_i x^i \in \mathbb{R}[x]$ of degree at most k-1, which again can be seen as a set of representatives of the *R*-algebra $\mathbb{R}[x]/(x^k - \alpha)$. Thus, we get an injective mapping $\operatorname{circ}_{\alpha} : \mathbb{R}[x]/(x^k - \alpha) \to \mathbb{R}^{k \times k}$.

Obviously $\operatorname{circ}_{\alpha}(1) = I_k$, which denotes the $(k \times k)$ -unit matrix, $\operatorname{circ}_{\alpha}(\lambda f) = \lambda \operatorname{circ}_{\alpha}(f)$ and $\operatorname{circ}_{\alpha}(f+g) = \operatorname{circ}_{\alpha}(f) + \operatorname{circ}_{\alpha}(g)$ for all scalars $\lambda \in R$ and all f and g in $R[x]/(x^k - \alpha)$. Furthermore, it holds $\operatorname{circ}_{\alpha}(e_i) = \operatorname{circ}_{\alpha}(x^i) = T^i_{\alpha}$ for all $i \in \{0, \ldots, k-1\}$ and $\operatorname{circ}_{\alpha}(x^k) = \operatorname{circ}_{\alpha}(\alpha) = \alpha I_k = T^k_{\alpha}$, where e_i denotes the ith¹ unit vector. So we have $\operatorname{circ}_{\alpha}(x^i x^j) = \operatorname{circ}_{\alpha}(x^i) \operatorname{circ}_{\alpha}(x^j)$ for all $\{i, j\} \subset \mathbb{N}$. By linear extension it follows that $\operatorname{circ}_{\alpha}$ is a monomorphism of R-algebras. Hence the image of $\operatorname{circ}_{\alpha}$, which is the set of the α -circulant $(k \times k)$ -matrices over R, forms a commutative subalgebra of the R-algebra $R^{k \times k}$ and it is isomorphic to the R-algebra $R[x]/(x^k - \alpha)$. Especially, we get $\operatorname{circ}_{\alpha}(a_0, \ldots, a_{k-1}) = \sum_{i=0}^{k-1} a_i T^i_{\alpha}$.

2 Double α -circulant and bordered α -circulant codes

Definition 2.1 Let R be a commutative ring and $\alpha \in R$. Let A be an α -circulant matrix. A code generated by a generator matrix $(I_k \mid A)$ is called double α -circulant code. A code generated by a generator matrix

$$egin{pmatrix} & eta & \gamma \cdots \gamma \ \delta & & & & \ I_k & ec & A & & \ & \delta & & & & \end{pmatrix}$$

with $\{\beta, \gamma, \delta\} \subset R\}$ is called bordered α -circulant code. The number of rows of such a generator matrix is denoted by k, and the number of columns is denoted by n = 2k.

As usual, two codes C_1 and C_2 are called *equivalent* or *isomorphic*, if there is a monomial transformation that maps C_1 to C_2 .

Definition 2.2 Let R be a commutative ring and $k \in \mathbb{N}$. The symmetric group over the set $\{0, \ldots, k-1\}$ is denoted by S_k . For a permutation $\sigma \in S_k$ the permutation matrix $S(\sigma)$ is defined as $S_{ij} = \delta_{i,\sigma(j)}$, where δ is the Kronecker delta. An invertible matrix $M \in GL(k, R)$ is called monomial, if $M = S(\sigma)D$ for a permutation $\sigma \in S_k$ and an invertible diagonal matrix D. The decomposition of a monomial matrix into the permutational and the diagonal matrix part is unique.

¹Throughout this article, counting starts at 0. Accordingly, $\mathbb{N} = \{0, 1, 2, ...\}$

Let $\mathfrak{M} = \mathfrak{M}(k, R, \alpha)$ be the set of all pairs (N, M) of monomial $(k \times k)$ -matrices M and N over R, such that for each α -circulant matrix $A \in R^{k \times k}$, the matrix $N^{-1}AM$ is again α -circulant. An element (N, M) of \mathfrak{M} can be interpreted as a mapping $R^{k \times k} \to R^{k \times k}$, $A \mapsto N^{-1}AM$. The composition of mappings implies a group structure on \mathfrak{M} , and \mathfrak{M} operates on the set of all α -circulant matrices.

Now let $(N, M) \in \mathfrak{M}$. The codes generated by $(I \mid A)$ and by $(I \mid N^{-1}AM)$ are equivalent, since

$$N^{-1}(I \mid A) \begin{pmatrix} N & 0 \\ 0 & M \end{pmatrix} = (I \mid N^{-1}AM)$$

and the matrix $\begin{pmatrix} N & 0 \\ 0 & M \end{pmatrix}$ is monomial. Thus, \mathfrak{M} also operates on the set of all double α -circulant generator matrices.

In general \mathfrak{M} -equivalence is weaker than the code equivalence: For example the vectors $v = (111110101101101) \in \mathbb{Z}_2^{16}$ and $w = (1110010011100000) \in \mathbb{Z}_2^{16}$ generate two equivalent binary double circulant self-dual [32, 16]-codes. But since the number of zeros in v and w is different, the two circulant matrices generated by v and w cannot be in the same \mathfrak{M} -orbit.

3 Monomial transformations of α -circulant matrices

Let R be a commutative ring, $k \in \mathbb{N}$ and $\alpha \in R$ a unit. In this section we give some elements (N, M) of the group $\mathfrak{M} = \mathfrak{M}(R, k, \alpha)$ defined in the last section. In part they can be deduced from [4], chapter 16, §6, problem 7.

Quite obvious elements of \mathfrak{M} are (I_k, T_α) , (T_α, I_k) , (I_k, D) and (D, I_k) , where D denotes an invertible scalar matrix.

For certain α further elements of \mathfrak{M} are given by the following lemma, which is checked by a calculation:

Lemma 3.1 Let $\alpha \in R$ with $\alpha^2 = 1$ and $s \in \{0, \ldots, k-1\}$ with gcd(s,k) = 1. Let $\sigma = (i \mapsto si \mod k) \in S_k$. We define D as the diagonal matrix which has $\alpha^{(s+1)i+\lfloor si/k \rfloor}$ as *i*-th diagonal entry, and we define the monomial matrix $M = S(\sigma)D$. Then

$$(M,M) \in \mathfrak{M}$$

More specifically: Let $f \in R[x]/(x^k - \alpha)$. It holds:

$$M^{-1}\operatorname{circ}_{\alpha}(f)M = \operatorname{circ}_{\alpha}(f((\alpha x)^{s}))$$

Finally, there is an invertible transformation $A \mapsto M^{-1}AM$ that converts an α circulant matrix into a β -circulant matrix for certain pairs (α, β) :

Lemma 3.2 Let R be a commutative ring, $\alpha \in R$ a unit and $\{i, j\} \subset \mathbb{N}$. Let A be an α^i -circulant $(k \times k)$ -matrix over R and M the diagonal matrix with the diagonal vector $(1, \alpha^j, \alpha^{2j}, \ldots, \alpha^{(k-1)j})$. Then $M^{-1}AM$ is an α^{i-kj} -circulant matrix. For $\alpha^2 = 1$ the matrix M is orthogonal.

4 The lift of an α -circulant matrix

If we want to construct all equivalence classes of double α -circulant codes over a commutative ring R, it is enough to consider orbit representatives of the group action of \mathfrak{M} on the set of all double α -circulant generator matrices, or equivalently, on the set of all α -circulant matrices.

Furthermore, we can benefit from non-trivial ideals of R: Let I be an ideal of R with $\{0\} \neq I \neq R$, and $\bar{R} = R/I$ the canonical projection of R onto R/I. We set $\mathfrak{M} = \mathfrak{M}(k, R, \alpha)$ and $\mathfrak{M} = \{(\bar{N}, \bar{M}) : (N, M) \in \mathfrak{M}\}$. It holds $\mathfrak{M} \subseteq \mathfrak{M}(k, R/I, \bar{\alpha})$. Let $e : R/I \to R$ be a mapping that maps each element r + I of R/I to an representative element $r \in R$.

Definition 4.1 Let $A = \operatorname{circ}_{\bar{\alpha}}(v)$ be an $\bar{\alpha}$ -circulant matrix with generating vector $v \in R/I$. An α -circulant matrix B over R is called lift of A, if $\bar{B} = A$. In this case we also say that the code generated by $(I_k | B)$ is a lift of the code generated by $(I_k | A)$. The lifts of A are exactly the matrices of the form $\operatorname{circ}_{\alpha}(e(v)) + \operatorname{circ}_{\alpha}(w)$ with $w \in I^{k,2}$ The vector w is called lift vector.

To find all double α -circulant codes over R, we can run over all lifts of all double $\bar{\alpha}$ -circulant codes over R/I. The crucial point now is that for finding at least one representative all equivalence classes of double α -circulant codes over R, it is enough to run over the lifts of a *set of representatives* of the group action of $\bar{\mathfrak{M}}$ on the set of all $\bar{\alpha}$ -circulant codes over R/I:

Lemma 4.1 Let A and B be two $\bar{\alpha}$ -circulant matrices over R/I which are in the same $\bar{\mathfrak{M}}$ -orbit. Then for each lift of A there is a lift of B which is in the same \mathfrak{M} -orbit.

Proof. Because A and B are in the same $\overline{\mathfrak{M}}$ -orbit, there is a pair of monomial matrices $(N, M) \in \mathfrak{M}$ such that $\overline{N}^{-1}A\overline{M} = B$. Let $a \in (R/I)^k$ be the generating vector of A and $b \in (R/I)^k$ the generating vector of B. Since $\overline{\operatorname{circ}}_{\alpha}(e(a)) = A$ and $\overline{\operatorname{circ}}_{\alpha}(e(b)) = B$ it holds $N^{-1}\operatorname{circ}_{\alpha}(e(a))M = \operatorname{circ}_{\alpha}(e(b)) + K$, where $K \in I^{k \times k}$. $\operatorname{circ}_{\alpha}(e(b))$ is of course α -circulant, and $N^{-1}\operatorname{circ}_{\alpha}(e(a))M$ is α -circulant because of $(N, M) \in \mathfrak{M}$. Thus, also K is α -circulant and therefore there is a $z \in I^k$ with $\operatorname{circ}_{\alpha}(z) = K$.

Now, let $w \in I^k$ be some lift vector. $N^{-1}\operatorname{circ}_{\alpha}(w)M \in I^{k \times k}$ is α -circulant and generated by a lift vector $w' \in I^k$. Then $N^{-1}(\operatorname{circ}_{\alpha}(e(a)) + \operatorname{circ}_{\alpha}(w))M = \operatorname{circ}_{\alpha}(e(b)) + \operatorname{circ}_{\alpha}(z+w')$, and $z+w' \in I^k$. Therefore, the lift of A by the lift vector w and the lift of B by the lift vector z+w' are in the same \mathfrak{M} -orbit. \Box

It is not hard to adapt this approach to bordered α -circulant codes. One difference is an additional restriction on the appearing monomial matrices: Its diagonal part must be a scalar matrix. The reason for this is that otherwise the monomial transformations would destroy the border vectors $(\gamma \dots \gamma)$ and $(\delta \dots \delta)^t$.

Circulant matrices are often used to construct self-dual codes. Thus we are interested in a fast way to generate the lifts that lead to self-dual codes. The next section gives such an algorithm for the case that R is a finite chain ring and I is its minimal ideal.

²To avoid confusion, we point out that I^k denotes the k-fold Cartesian product $I \times \ldots \times I$ here.

5 Self-dual double α -circulant codes over finite commutative chain rings

We want to investigate self-dual double α -circulant codes. Here we need $\alpha^2 = 1$. This is seen by denoting the rows of a generator matrix G of such a code by $w_0 \dots w_{k-1}$, and by comparing the scalar products $\langle w_0, w_1 \rangle$ and $\langle w_1, w_2 \rangle$, which must be both zero. Furthermore, given $\alpha^2 = 1$, we see that $\langle w_0, w_i \rangle = \langle w_j, w_{i+j} \rangle$, where i + jmust be read modulo k. Thus G generates a self-dual code if $\langle w_0, w_0 \rangle = 1$ and for all $j \in \{1, \dots, \lfloor k/2 \rfloor\}$ the scalar products $\langle w_0, w_j \rangle$ are equal to 0.

Definition 5.1 A ring R is called chain ring, if its left ideals are linearly ordered by inclusion.

For the theory of finite chain rings and linear codes over finite chain rings see [2].

In this section R will be a finite commutative chain ring, which is not a finite field, and α an element of R with $\alpha^2 = 1$. There is a ring element $\theta \in R$ which generates the maximal ideal $R\theta$ of R. The number q is defined by $R/R\theta \cong \mathbb{F}_q$, and m is defined by $|R| = q^m$. Because R is not a field, we have $m \ge 2$. The minimal ideal of R is $R\theta^{m-1}$. \mathfrak{M} is defined as in section 2, with with the difference that all monomial matrices M should be orthogonal, that is $MM^t = I_k$. Thus each \mathfrak{M} -image of a generator matrix of a self-dual code again generates a self-dual code.

Now let $I = R\theta^{m-1}$ be the minimal ideal of R. As in section 4 let $e : R/I \to R$ be a mapping that assigns each element of R/I to an representative in R, now with the additional condition $e(\bar{\alpha}) = \alpha$.

We mention that if $(I_k | B)$ generates an double α -circulant self-dual code over R, then $(I_k | \overline{B})$ generates a double $\overline{\alpha}$ -circulant self-dual code over R/I. So B is among the lifts of all $\overline{\alpha}$ -circulant matrices A over R/I such that $(I_k | A)$ generates a self-dual double $\overline{\alpha}$ -circulant code.

Let $A = \operatorname{circ}_{\bar{\alpha}}(a)$ be an $\bar{\alpha}$ -circulant matrix over R/I such that $(I_k \mid A)$ generates a self-dual code. So $AA^t = -I_k$, and therefore

$$c_{0} := 1 + \sum_{i=0}^{k-1} e(a_{i})^{2} \in I \text{ and}$$

$$c_{j} := \sum_{i=0}^{j-1} \alpha e(a_{i}) e(a_{k-j+i}) + \sum_{i=j}^{k-1} e(a_{i}) e(a_{i-j}) \in I \text{ for all } j \in \{1, \dots, \lfloor k/2 \rfloor\}$$

We want to find all lifts $B = \operatorname{circ}_{\alpha}(e(a)) + \operatorname{circ}_{\alpha}(w)$ of A with $w \in I^k$ such that $BB^t = -I_k$. As we have seen, this is equivalent to

$$0 = 1 + \sum_{i=0}^{k-1} (e(a_i) + w_i)^2 \text{ and}$$

$$0 = \sum_{i=0}^{j-1} (e(a_i) + w_i)(\alpha e(a_{k-j+i}) + w_{k-j+i}) + \sum_{i=j}^{k-1} (e(a_i) + w_i)(e(a_{i-j}) + w_{i-j})$$

Kiermaier, Wassermann

where the second equation holds for all $j \in \{1, \dots, \lfloor k/2 \rfloor\}$. Using $I \cdot I = 0$, we get

$$0 = c_0 + 2\sum_{i=0}^{k-1} e(a_i)w_i \text{ and}$$

$$0 = c_j + \sum_{i=0}^{j-1} (e(a_i)w_{k-j+i} + \alpha e(a_{k-j+i})w_i) + \sum_{i=j}^{k-1} (e(a_i)w_{i-j} + e(a_{i-j})w_i)$$

This is a *R*-linear system of equations for the components $w_i \in I$ of the lift vector. Using the fact that the *R*-modules $R/(R\theta)$ and *I* are isomorphic, and $R/(R\theta) \cong \mathbb{F}_q$, this can be reformulated as a linear system of equations over the finite field \mathbb{F}_q , which can be solved efficiently.

Since R/I is again a commutative chain ring, the lifting step can be applied repeatedly. Thus, starting with the codes over \mathbb{F}_q , the codes over R can be constructed by m-1 nested lifting steps.

Again, this method can be adapted to bordered α -circulant matrices over commutative finite chain rings.

6 Application: Self-dual codes over \mathbb{Z}_4

For a fixed length n we want to find the highest minimum Lee distance d_{Lee} of double nega-circulant and bordered circulant self-dual codes over \mathbb{Z}_4 . In [5] codes of the bordered circulant type of length up to 32 were investigated.

First we notice that the length n must be a multiple of 8: Let C be a bordered circulant or a double nega-circulant code of length n and c a codeword of C. We have $0 = \langle c, c \rangle = \sum_{i=0}^{n-1} c_i^2 \in \mathbb{Z}_4$. The last expression equals the number of units in c modulo 4, so the number of units of each codeword is a multiple of 4. It follows that the image \overline{C} of C over \mathbb{Z}_2 is a doubly-even self-dual code of length n, which can only exist for lengths n divisible by 8.

Furthermore, it holds

$$d_{\text{Lee}}(C) \le 2d_{\text{Ham}}(\bar{C}) \tag{1}$$

As a result, we only need to consider the lifts of codes \overline{C} which have a sufficiently high minimum Hamming distance.

We explain the algorithm for the case of the nega-circulant codes: In a first step, for a given length n we generate all doubly-even double circulant self-dual codes over \mathbb{Z}_2 . This is done by enumerating Lyndon words of length n which serve as generating vectors for the circulant matrix. Next, we filter out all duplicates with respect to the group action of $\overline{\mathfrak{M}}$, where \mathfrak{M} is the group generated by the elements given in section 3 which consist of pairs of orthogonal monomial matrices.

A variable d will keep the best minimum Lee distance we already found. We initialize d with 0. Now we loop over all binary codes $C_{\mathbb{Z}_2}$ in our list, from the higher to the lower minimum Hamming distance of $C_{\mathbb{Z}_2}$: If $2d_{\text{Ham}}(C_{\mathbb{Z}_2}) \leq d$ we are finished

because of (1). Otherwise, as explained in section 5, we solve a system of linear equations over \mathbb{Z}_2 and get all self-dual lifts of $C_{\mathbb{Z}_2}$. For these lifts we compute the minimum Lee distance and update d accordingly.

Most of the computation time gets used on the computation of the minimum Lee distance. Thus it was a crucial point to write a specialized algorithm for this purpose. It is described in [3].

The results of our search are displayed in the following table. For given length n, it lists the highest minimum Lee distance of a self-dual code of the respective type:

n	8	16	24	32	40	48	56	64
double nega-circulant	6	8	12	14	14	18	16	20
bordered circulant	6	8	12	14	14	18	18	20

We see that the results are identical for the two classes of codes, except for length 56. Using (1) there is a simple reason that for this length no double circulant self-dual code over \mathbb{Z}_4 with minimum Lee distance greater than 16 exists: The best doubly-even double circulant self-dual binary code has only minimum Hamming distance 8.

Acknowledgment. This research was supported in part by Deutsche Forschungsgemeinschaft WA 1666/4-1.

References

- [1] P. J. Davis, *Circulant Matrices*, Chelsea publishing, New York, second edition, 1994.
- [2] T. Holold, I. Landjev, Linear codes over finite chain rings, Electr. J. Comb. 7, 2000.
- [3] M. Kiermaier, A. Wassermann, On the minimum Lee distance of quadratic residue codes over Z₄, *Proc. Intern. Symp. Inform. Theory*, 2008, to appear.
- [4] F. J. MacWilliams, N. J. A. Sloane, *The Theory of Error-Correcting Codes*, North-Holland, Amsterdam, 1977.
- [5] M. Harada T. A. Gulliver, Extremal double circulant Type II codes over \mathbb{Z}_4 and construction of 5-(24, 10, 36) designs, *Discr. Math.* 194, 1999, 129-137.