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Abstract. In this paper we investigate codes over finite commutative rings R, whose generator
matrices are built from a-circulant matrices. For a non-trivial ideal I < R we give a method to
lift such codes over R/ to codes over R, such that some isomorphic copies are avoided. For
the case where [ is the minimal ideal of a finite chain ring we refine this lifting method: We
impose the additional restriction that lifting preserves self-duality. It will be shown that this
can be achieved by solving a linear system of equations over a finite field. Finally we apply
this technique to Z4-linear double nega-circulant and bordered circulant self-dual codes. We
determine the best minimum Lee distance of these codes up to length 64.

1 «-circulant matrices

In this section, we give some basic facts on a-circulant matrices, compare with [4],
where some theory of circulant matrices is given in chapter 16, and with [1], where
a-circulant matrices are called {k }-circulant on page 84.

Definition 1.1 Let R be a commutative ring, k a natural number and o € R. An
(k x k)-matrix A is called a~circulant, if A has the form

ao al a9 e QAf_9 ar_1
[67¢7 3} ap al Ce Ap—3 (77}
aap—o9 Caap—1 ag e Ql.—4 a3

aaq a9 aaz ... Q-1 ap

with a; € R fori € {0,...,k — 1}. For a« = 1, A is called circulant, for o = —1, A
is called nega-circulant or skew-circulant, and for o = 0, A is called semi-circulant.

An a-circulant matrix A is completely determined by its first row v = (ag, a1, . . .,
ar—1) € RF. We denote A by circ,(v) and say that A is the a-circulant matrix
generated by v.

In the following, o usually will be a unit or even a? = 1.
We define T,, = circ, (0, 1,0, ...,0), that is
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Using Ty, there is another characterization of an «-circulant matrix: A matrix
A € RF*F is a-circulant iff AT, = T,A. This is seen directly by comparing the
components of the two matrix products.

In the following it will be useful to identify the generating vectors (ag, a, .. .,
ax—1) € R™ with the polynomials Z?:_ol a;z’ € R[z] of degree at most k — 1, which
again can be seen as a set of representatives of the R-algebra R[x]/(z* — ). Thus,
we get an injective mapping circ,, : R[z]/(z¥ — a) — RF¥F,

Obviously circy (1) = Iy, which denotes the (k x k)-unit matrix, circ,(Af) =
Acirc, (f) and circ, (f + g) = circq(f) + circy(g) for all scalars A € R and all f
and g in R[z]/(x* — «). Furthermore, it holds circ,(e;) = circy(zf) = T¢ for all
i € {0,...,k — 1} and circy(2*) = circo(a) = al}, = TF, where e; denotes the
ith! unit vector. So we have circ, (z'27) = circ, (2?) circy(27) for all {4,7} C N.
By linear extension it follows that circ,, is a monomorphism of R-algebras. Hence the
image of circ,, which is the set of the a-circulant (k x k)-matrices over R, forms a
commutative subalgebra of the R-algebra R¥** and it is isomorphic to the R-algebra

R[x]/(x* — o). Especially, we get circy(ag, ..., a5 1) = Zf:_ol a;TE.

2 Double a-circulant and bordered o-circulant codes

Definition 2.1 Let R be a commutative ring and o € R. Let A be an a-circulant
matrix. A code generated by a generator matrix (I, | A) is called double c-circulant
code. A code generated by a generator matrix

By

)
Iy A

4]

with {3,7,0} C R} is called bordered a-circulant code. The number of rows of such
a generator matrix is denoted by k, and the number of columns is denoted by n = 2k.

As usual, two codes C7 and Cj are called equivalent or isomorphic, if there is a
monomial transformation that maps C; to Cb.

Definition 2.2 Let R be a commutative ring and k € N. The symmetric group over
the set {0, ...,k — 1} is denoted by Sy. For a permutation o € Sy, the permutation
matrix S(o) is defined as S;; = d;,0(j), where ¢ is the Kronecker delta. An invertible
matrix M € GL(k, R) is called monomial, if M = S(o)D for a permutation o € Sy,
and an invertible diagonal matrix D. The decomposition of a monomial matrix into
the permutational and the diagonal matrix part is unique.

'Throughout this article, counting starts at 0. Accordingly, N = {0,1,2,...}
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Let 9 = M(k, R, o) be the set of all pairs (N, M) of monomial (k X k)-matrices
M and N over R, such that for each a-circulant matrix A € R¥** the matrix
N~1AM is again a-circulant. An element (N, M) of 9 can be interpreted as a map-
ping RF*F — RFXF A s N~1AM. The composition of mappings implies a group
structure on 91, and 9N operates on the set of all a-circulant matrices.

Now let (N, M) € 9. The codes generated by (I | A) and by (I | N"1AM) are
equivalent, since

NI | A) (JX AZ) — (1| N"'AM)

. (N
and the matrix < 0 M

a-circulant generator matrices.

In general 9Mt-equivalence is weaker than the code equivalence: For example the
vectors v = (1111101011011010) € 7% and w = (1110010011100000) € Zi6
generate two equivalent binary double circulant self-dual [32, 16]-codes. But since the
number of zeros in v and w is different, the two circulant matrices generated by v and
w cannot be in the same M-orbit.

) is monomial. Thus, 9T also operates on the set of all double

3 Monomial transformations of o-circulant matrices

Let R be a commutative ring, k¥ € N and o € R a unit. In this section we give some
elements (N, M) of the group M = M(R, k, ) defined in the last section. In part
they can be deduced from [4], chapter 16, §6, problem 7.

Quite obvious elements of 9t are (I, Ty ), (Tw, It), (Ix, D) and (D, I},), where D
denotes an invertible scalar matrix.

For certain « further elements of 97 are given by the following lemma, which is
checked by a calculation:

Lemma3.1 Let « € Rwitha® = 1 and s € {0,...,k — 1} with ged(s, k) = 1.
Let 0 = (i — si mod k) € Si. We define D as the diagonal matrix which has
sVt s/k] oo i th diagonal entry, and we define the monomial matrix M = S (o)D.
Then
(M, M) eMm
More specifically: Let f € R[z]/(z* — ). It holds:
M~ circq(f)M = circo (f((az)®))

Finally, there is an invertible transformation A — M ~1AM that converts an a-
circulant matrix into a 3-circulant matrix for certain pairs («, 3):

Lemma 3.2 Let R be a commutative ring, o € R a unit and {i,j} C N. Let A be
an o'-circulant (k x k)-matrix over R and M the diagonal matrix with the diagonal
vector (1, al. ..., a(k_l)j). Then M~ AM is an o' % -circulant matrix. For
a? = 1 the matrix M is orthogonal.
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4 The lift of an o-circulant matrix

If we want to construct all equivalence classes of double a-circulant codes over a
commutative ring R, it is enough to consider orbit representatives of the group action
of 91 on the set of all double a-circulant generator matrices, or equivalently, on the set
of all a-circulant matrices.

Furthermore, we can benefit from non-trivial ideals of R: Let I be an ideal of
R with {0} # I # R, and~ : R — R/I the canonical projection of R onto R/I.
We set M = M(k,R,«) and M = {(N,M) : (N,M) € M}. It holds M C
M(k,R/I,&). Lete : R/I — R be a mapping that maps each element r + I of R/I
to an representative element r € R.

Definition 4.1 Ler A = circs(v) be an a-circulant matrix with generating vector
v € R/I. An a-circulant matrix B over R is called lift of A, if B = A. In this
case we also say that the code generated by (1, | B) is a lift of the code generated by
(I | A). The lifts of A are exactly the matrices of the form circ,(e(v)) + circ(w)
with w € I*.2 The vector w is called lift vector.

To find all double «-circulant codes over R, we can run over all lifts of all double
a-circulant codes over R/I. The crucial point now is that for finding at least one
representative all equivalence classes of double a-circulant codes over R, it is enough
to run over the lifts of a set of representatives of the group action of 9t on the set of
all a-circulant codes over R/I:

Lemma 4.1 Let A and B be two a-circulant matrices over R/I which are in the same
M-orbit. Then for each lift of A there is a lift of B which is in the same M-orbit.

Proof. Because A and B are in the same 9)t-orbit, there is a pair of monomial
matrices (N, M) € 90 such that N~ AM = B. Leta € (R/I)* be the generating
vector of A and b € (R/I)* the generating vector of B. Since circ,(e(a)) = A and
circe (e(b)) = B it holds N~ circy (e(a))M = circy(e(b)) + K, where K € IF*k,
circy(e(b)) is of course a-circulant, and N~! circ,(e(a))M is a-circulant because
of (N, M) € 9. Thus, also K is a-circulant and therefore there is a z € I* with
circe(2) = K.

Now, let w € I* be some lift vector. N~!circ,(w)M € I*** is a-circulant
and generated by a lift vector w’ € I*¥. Then N~!(circ,(e(a)) + circy(w))M =
circy (e(b)) +circy (2 +w'), and z +w' € I*. Therefore, the lift of A by the lift vector
w and the lift of B by the lift vector z + w’ are in the same 9)t-orbit. O

It is not hard to adapt this approach to bordered a-circulant codes. One difference
is an additional restriction on the appearing monomial matrices: Its diagonal part must
be a scalar matrix. The reason for this is that otherwise the monomial transformations
would destroy the border vectors (v ...~) and (§...4)".

Circulant matrices are often used to construct self-dual codes. Thus we are inter-
ested in a fast way to generate the lifts that lead to self-dual codes. The next section
gives such an algorithm for the case that R is a finite chain ring and [ is its minimal
ideal.

?To avoid confusion, we point out that I* denotes the k-fold Cartesian product I x ... x I here.
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5 Self-dual double a-circulant codes over finite commutative
chain rings

We want to investigate self-dual double a-circulant codes. Here we need o> = 1. This
is seen by denoting the rows of a generator matrix G of such a code by wyg ... wg_1,
and by comparing the scalar products (wg,w;) and (w;,ws), which must be both
zero. Furthermore, given o = 1, we see that (wo,w;) = (w;, w;y;), where i + j
must be read modulo k. Thus G generates a self-dual code if (wq, wp) = 1 and for all
j€{1,...,|k/2]} the scalar products (wq,w;) are equal to 0.

Definition 5.1 A ring R is called chain ring, if its left ideals are linearly ordered by
inclusion.

For the theory of finite chain rings and linear codes over finite chain rings see [2].

In this section R will be a finite commutative chain ring, which is not a finite
field, and o an element of R with o® = 1. There is a ring element § € R which
generates the maximal ideal Rf of R. The number g is defined by R/Rf# = F,, and
m is defined by |R| = ¢™. Because R is not a field, we have m > 2. The minimal
ideal of R is RO™1. 9 is defined as in section 2, with with the difference that all
monomial matrices M should be orthogonal, that is M M = I;,. Thus each 91-image
of a generator matrix of a self-dual code again generates a self-dual code.

Now let I = RO™~! be the minimal ideal of R. As in section 4 lete : R/I — R
be a mapping that assigns each element of R/ to an representative in R, now with the
additional condition e(&) = a.

We mention that if (I}, | B) generates an double c-circulant self-dual code over R,
then (I, | B) generates a double a-circulant self-dual code over R/I. So B is among
the lifts of all a-circulant matrices A over R/I such that (I, | A) generates a self-dual
double &-circulant code.

Let A = circs(a) be an @-circulant matrix over R/I such that (I, | A) generates
a self-dual code. So AA? = —I;, and therefore

k—1
co:=1+ Ze(ai)Q €l and
i=0
j—1 k—1
= Z ae(a;)e(ag—j4q) + Z e(a;)e(ai—;) € I forallj e {1,...,[k/2]}
=0 i=j
We want to find all lifts B = circ,(e(a)) + circe(w) of A with w € I* such that
BB = —Ij.. As we have seen, this is equivalent to
k—1
0=1+) (e(a;)+w;)* and
i=0
j—1 k—1

e(ai) + wi)(ae(ar—ji) + we—ja) + Y (e(ar) +wi)(e(aij) +wi )
z:O =7
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where the second equation holds for all j € {1,..., |k/2]}. Using I - I = 0, we get

k—1
0=co+2 Z e(a;)w; and
i=0

7j—1 k—1
0=c;j+ > (elai)wp—jii + aelar—jriw;) + ) _(e(ai)wi; + e(ai—j)wi)
i=0 i=j

This is a R-linear system of equations for the components w; € I of the lift vector.
Using the fact that the R-modules R/(R#) and I are isomorphic, and R/(Rf) = F,,
this can be reformulated as a linear system of equations over the finite field F;, which
can be solved efficiently.

Since R/I is again a commutative chain ring, the lifting step can be applied re-
peatedly. Thus, starting with the codes over I, the codes over R can be constructed
by m — 1 nested lifting steps.

Again, this method can be adapted to bordered a-circulant matrices over commu-
tative finite chain rings.

6 Application: Self-dual codes over Z,

For a fixed length n we want to find the highest minimum Lee distance dy,c. of double
nega-circulant and bordered circulant self-dual codes over Z4. In [5] codes of the
bordered circulant type of length up to 32 were investigated.

First we notice that the length n must be a multiple of 8: Let C be a bordered
circulant or a double nega-circulant code of length n and ¢ a codeword of C'. We have
0 = (c,c) = Z?;()l c? € Z4. The last expression equals the number of units in ¢
modulo 4, so the number of units of each codeword is a multiple of 4. It follows that
the image C of C over Zs is a doubly-even self-dual code of length n, which can only
exist for lengths n divisible by 8.

Furthermore, it holds

dLee(C) § 2dHam(0) (1)

As a result, we only need to consider the lifts of codes C' which have a sufficiently
high minimum Hamming distance.

We explain the algorithm for the case of the nega-circulant codes: In a first step,
for a given length n we generate all doubly-even double circulant self-dual codes over
Zo. This is done by enumerating Lyndon words of length n which serve as generating
vectors for the circulant matrix. Next, we filter out all duplicates with respect to the
group action of 91, where 91 is the group generated by the elements given in section 3
which consist of pairs of orthogonal monomial matrices.

A variable d will keep the best minimum Lee distance we already found. We
initialize d with 0. Now we loop over all binary codes C7, in our list, from the higher
to the lower minimum Hamming distance of Cz,: If 2dpam(Cz,) < d we are finished
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because of (1). Otherwise, as explained in section 5, we solve a system of linear
equations over Zg and get all self-dual lifts of C'z,. For these lifts we compute the
minimum Lee distance and update d accordingly.

Most of the computation time gets used on the computation of the minimum Lee
distance. Thus it was a crucial point to write a specialized algorithm for this purpose.
It is described in [3].

The results of our search are displayed in the following table. For given length n,
it lists the highest minimum Lee distance of a self-dual code of the respective type:

n ‘ 8 16 24 32 40 48 56 64
double nega-circulant | 6 8 12 14 14 18 16 20
bordered circulant | 6 8 12 14 14 18 18 20

We see that the results are identical for the two classes of codes, except for length 56.
Using (1) there is a simple reason that for this length no double circulant self-dual
code over Z4 with minimum Lee distance greater than 16 exists: The best doubly-even
double circulant self-dual binary code has only minimum Hamming distance 8.
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