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Abstract. The recurrent algorithm for construction of ordered basis of symmetric
group with degree n = 2k is given. It is shown that the number of transpositions
constituting such basis is equal to O(n log2

2 n). This value exceeds the order of lower
bound estimation only in coefficient log2 n.

1 Introduction

Let SX be a symmetric group with degree |X| on a set of numbers X. By Sn

denote group SX if X = {1, . . . , n}.
Let T1, T2, . . . , Tr be an ordered set of transpositions of SX , where

r 6 C2
|X|. We shall denote such ordered system of transpositions by Ψ and

represent as:
Ψ = T1 T2 . . . Tr ,

where the transpositions’ number r will be denoted by |Ψ|.
Definition 1. The system Ψ is called ordered basis of symmetric group SX if
any permutation PX ∈ SX can be represented as

PX = T γ1
1 · T γ2

2 · . . . · T γr
r ,

where γj ∈ {0, 1}, j = 1, 2, . . . , r . Note that there can exist several vectors
(γ1, . . . , γr) representing the same permutation PX .

In [1], we announced a result that can be easily used to show the existence of
algorithms for constructions of ordered bases with the transpositions’ number of
order 3

4 C2
n. Also there it was supposed that r should be close to value n log2 n.

This assumption corresponds well to the rough upper bound of factorial

n! 6 nn = 2n log2 n .

The obtained result is based on that the degree n of symmetric group Sn is
chosen to be equal to n = 2k, k > 3. Such choice allows successively partitioning
set of permutated objects in two equal-sized subsets. At each stage of partition,
”mixing” among objects is introduced, for example, by permutation (7). The
main results are formed by relations (3) – (6).
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2 Main results

2.1 Part 1

Consider a symmetric group SX at |X| = 4m, where m > 2. Partition the set
X = {x1, . . . , x4m} into two subsets, O and E:

O ∪ E = X, O ∩ E = ∅, |O| = |E| = 2m . (1)

Let PX , PO∪E be any permutation of group SX , SO∪E. It is evident
that

PO∪E =
(
O′ E′ O′′ E′′

Õ′ Ẽ′ Ẽ′′ Õ′′
)

=
(
O′ O′′ E′ E′′

Õ′ Õ′′ Ẽ′ Ẽ′′
)
·
(
Õ′′ Ẽ′′

Ẽ′′ Õ′′
)

,

where O = O′ ∪O′′ = Õ′ ∪ Õ′′ , E = E′ ∪ E′′ = Ẽ′ ∪ Ẽ′′ and notation
A
B , a1 a2 . . . a|A|

b1 b2 . . . b|B|
, A = {a1, a2, . . . , a|A|}, B = {b1, b2, . . . , b|B|},

|A| = |B|. Therefore,

Proposition 1. Any permutation PO∪E of group SO∪E can be factored as

PO∪E = PO · PE · TO,E , (2)

where PO and PE are some permutations belonging to symmetric groups SO and
SE correspondingly, and a permutation TO,E of group SO∪E has the form as

(
O∗ E∗
E∗ O∗

)
, (O∗,E∗), where O∗ ⊆ O, E∗ ⊆ E. (3)

Definition 2. An ordered system of transpositions of group SO∪E is called
system generating permutations of the form SOSETO,E, if TO,E can be any
permutation of the form (3), and SO, SE are some permutations of groups SO,
SE correspondingly.

Proposition 2. Let ΨO and ΨE be ordered bases of groups SO and SE corre-
spondingly. Let ΨO,E be an ordered system of transpositions of group SO∪E, and
this system generates permutations of the form SOSETO,E. Then the system

ΨO∪E = ΨOΨE ΨO,E (4)

is the ordered basis of group SO∪E.

Proof Follows directly from the factorization (2) and that

PO · PE · TO,E = POSO
−1

︸ ︷︷ ︸
ΨO

· PESE−1

︸ ︷︷ ︸
ΨE

· SOSETO,E︸ ︷︷ ︸
ΨO,E

.
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2.2 Part 2

Partition the set O into subsets O1, O2 and the set E into subsets E1, E2 by
the same way as in (1). Thus,

O1 ∪O2 = O, O1 ∩O2 = ∅ , E1 ∪ E2 = E, E1 ∩ E2 = ∅ ,

where |O1| = |O2| = |E1| = |E2| = 1
4 |X| = m.

Let O1 = {o1
1, o

1
2, . . . , o

1
m}, O2 = {o2

1, o
2
2, . . . , o

2
m}, E1 = {e1

1, e
1
2, . . . , e

1
m},

E2 = {e2
1, e

2
2, . . . , e

2
m}.

Consider an ordered system of transpositions Ψπ1; π2

O1,E2;O2,E1
consisting of

m transpositions of the form (o1
i , e

2
π1(i)) and m transpositions of the form

(o2
j , e

1
π2(j)), where 1 6 i 6 m, 1 6 j 6 m, and π1, π2 are some permutations

defined on the set {1, 2, . . . , m}. In expanded form such system is represented
as:

Ψπ1; π2

O1,E2;O2,E1
=

(
o1
1, e

2
π1(1)

)
. . .

(
o1
m, e2

π1(m)

) (
o2
1, e

1
π2(1)

)
. . .

(
o2
m, e1

π2(m)

)

Definition 3. Consider Õ ⊆ O, Ẽ ⊆ E.
Let Õ

π1; π2Â ◦ ≺ Ẽ denote that at any õ ∈ Õ and ẽ ∈ Ẽ transposition (õ, ẽ)
does not belong to the system Ψπ1; π2

O1,E2;O2,E1
.

If Õ = {õ1, õ2, . . . , õv}, Ẽ = {ẽ1, ẽ2, . . . , ẽv}, |Õ| = |Ẽ| = v then let Õ
π1; π2Â • ≺

Ẽ denote that all transpositions (õi, ẽi), 1 6 i 6 v, belong to the system
Ψπ1; π2

O1,E2;O2,E1
.

Proposition 3. Let ΨO1,E1 and ΨO2,E2 be some ordered systems of transposi-
tions generating permutations of the forms SO1SE1TO1,E1 and SO2SE2TO2,E2

correspondingly. Then the system

ΨO,E = ΨO1,E1ΨO2,E2 Ψπ1; π2

O1,E2;O2,E1
(5)

generates permutations of the form SOSETO,E at any π1 and π2.

Proof. Consider any permutation TO,E = (O∗,E∗), where O∗ ⊆ O, E∗ ⊆ E.
Suppose O∗ = O∗1 ∪O∗2 and E∗ = E∗1 ∪ E∗2, where O∗1 ⊆ O1, O∗2 ⊆ O2, E∗1 ⊆ E1,
E∗2 ⊆ E2.

LetO∗ = {o1, o2, . . . , ot}, E∗ = {e1, e2, . . . , et}, and letO∗α = {oα
1 , oα

2 , . . . , oα
t },

E∗β = {eβ
1 , eβ

2 , . . . , eβ
t } be the sets obtained by renumbering elements of the cor-

responding sets O∗, E∗ by means of permutations α, β defined on the set
{1, 2, . . . , t}: oα

i = oα(i), eβ
i = eβ(i), 1 6 i 6 t. It is obvious that at any α,

β there exist such permutations S̃O, S̃E of groups SO, SE correspondingly that
(O∗,E∗) = S̃OS̃E · (O∗α,E∗β).
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The sets O∗1, O∗2, E∗1, E∗2 can be partitioned into the following subsets:
O
′
1

π1; π2Â ◦ ≺ E
′
2 ; O

′′
1

π1; π2Â • ≺ E
′′
2 ; O

′
1 ∪O

′′
1 = O∗1, E

′
2 ∪ E

′′
2 = E∗2, O

′
1 ∩O

′′
1 = ∅, E

′
2 ∩ E

′′
2 = ∅ ;

O
′
2

π1; π2Â ◦ ≺ E
′
1 ; O

′′
2

π1; π2Â • ≺ E
′′
1 ; O

′
2 ∪O

′′
2 = O∗2, E

′
1 ∪ E

′′
1 = E∗1, O

′
2 ∩O

′′
2 = ∅, E

′
1 ∩ E

′′
1 = ∅ ;

O
′
= O

′
1 ∪O

′
2 ; E

′
= E

′
1 ∪ E

′
2 ; O

′ π1; π2Â ◦ ≺ E
′
, |O′ | = |E′ | .

There exists such renumbering of elements for each of the sets O∗, E∗ that

TO,E = (O∗,E∗) = S̃
′
OS̃

′
E · (O

′
, E

′
)(O

′′
1 , E

′′
2 )(O

′′
2 , E

′′
1 ) .

Whereas |O′ | = |O′
1|+ |O′

2| = |E′
1|+ |E′

2| = |E′ |, three cases are possible:
1) |O′

1| = |E′
1|, |O

′
2| = |E′

2|; 2) |O′
1| > |E′

1|, |O
′
2| < |E′

2|; 3) |O′
1| < |E′

1|,
|O′

2| > |E′
2| .

Without loss of generality consider only case 2) : |O′
1| > |E′

1|, |O
′
2| < |E′

2| .
Let O1 ∪ Ô1 = O

′
1, O1 ∩ Ô1 = ∅, E2 ∪ Ê2 = E

′
2, E2 ∩ Ê2 = ∅, Ê1 =

E
′
1, Ô2 = O

′
2, where |O1| = |E1|, |O2| = |E2|, |Ô1| = |Ê2| . Also Ô1

π1; π2Â ◦ ≺ Ê2,

since O
′ π1; π2Â ◦ ≺ E

′
.

There exists such renumbering of elements for each of the sets O
′
, E

′
that

(O
′
, E

′
) = S̃

′′
OS̃

′′
E · (O1, E1)(O2, E2)(Ô1, Ê2) .

It is clear, there exist such sets Ô2 ∈ O2, Ê1 ∈ E1 that

Ô2

π1; π2Â • ≺ Ê1, |Ô2| = |Ê1| = |Ô1| = |Ê2|; O2 ∩ Ô2 = ∅, E1 ∩ Ê1 = ∅ .

It is also evident that (Ô1, Ê2) = (Ô1, Ô2)(Ê1, Ê2) ·(Ô1, Ê1)(Ô2, Ê2) ·(Ô2, Ê1) .
This implies that

(O
′
, E

′
) = S̃

′′
OS̃

′′
E · (O1, E1)(O2, E2) · (Ô1, Ô2)(Ê1, Ê2) · (Ô1, Ê1)(Ô2, Ê2) · (Ô2, Ê1) .

Since O1 ∩ Ô1 = ∅, O2 ∩ Ô2 = ∅, E1 ∩ Ê1 = ∅, E2 ∩ Ê2 = ∅, it follows that

TO, E = S̃
′
OS̃

′′
O(Ô1, Ô2) ·S̃′

ES̃
′′
E (Ê1, Ê2) ·(O1, E1)(Ô1, Ê1) ·(O2, E2)(Ô2, Ê2) ·(O′′1 , E

′′
2 )(Ô2, Ê1)(O

′′
2 , E

′′
1 ) .

Each of the systems ΨO1,E1 , ΨO2,E2 generates permutations of the forms
SO1SE1TO1,E1 , SO2SE2TO2,E2 correspondingly. Suppose
TO1,E1 = (O1, E1)(Ô1, Ê1), TO2,E2 = (O2, E2)(Ô2, Ê2). Then

SOSETO,E = SO1SE1TO1,E1︸ ︷︷ ︸
ΨO1,E1

·SO2SE2TO2,E2︸ ︷︷ ︸
ΨO2,E2

· (O′′
1 , E

′′
2 )(Ô2, Ê1)(O

′′
2 , E

′′
1 )︸ ︷︷ ︸

Ψ
π1; π2
O1,E2;O2,E1

,

where S−1
O = S̃

′
OS̃

′′
O(Ô1, Ô2) ·S−1

O1
S−1
O2

, S−1
E = S̃

′
ES̃

′′
E(Ê1, Ê2) ·S−1

E1
S−1
E2

. Each
of three permutations marked out in previous expression is generated by corre-
sponding ordered system of transpositions.

Based on that the permutation TO,E is any, it follows that the system ΨO,E
generates permutations of the form SOSETO,E at any π1 and π2 as they have
been choosing at random. Proposition is proved.
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2.3 Part 3

Using relations (4) and (5), we recurrently construct an ordered basis of sym-
metric group Sn at n = 2k, k > 3.

At each step some sets are partitioned into two equal-sized subsets, that is,
if |A| = 2t then |A1| = |A2| = t. By analogy we shall partition the original set
X = {1, 2, 3, . . . , 2k} and apply (4) to being divided subsets till their minimal
size is equal to 4. Let us use that if A = {a1, a2, a3, a4} then

ΨA = (a1, a3)(a1, a4)(a2, a3)(a1, a2)(a3, a4) (6)

is the ordered basis of group SA.
Suppose that in relation (5) for all subsets

π1 = π2 =
(

1 2 . . . m− 1 m
m m− 1 . . . 2 1

)
, 1 6 m 6 2k−2 . (7)

We shall apply (5) until the minimal size of subsets is equal to 2.

Example. Consider n = 23 = 8, X = {1, 2, 3, 4, 5, 6, 7, 8}. Let X0 =
{1, 3, 5, 7, 9, 11, 13, 15}, X1 = {2, 4, 6, 8, 10, 12, 14, 16}, X00 = {1, 5, 9, 13}, X01 =
{3, 7, 11, 15}, X10 = {2, 6, 10, 14}, X11 = {4, 8, 12, 16}. Then

ΨX = ΨX0ΨX1 ΨX0,X1 = ΨX00ΨX01 ΨX00,X01 ΨX10ΨX11 ΨX10,X11 ΨX0,X1 .

Let X00
0 = {1, 5}, X00

1 = {9, 13}, X01
0 = {3, 7}, X01

1 = {11, 15}, X10
0 =

{2, 6}, X10
1 = {10, 14}, X11

0 = {4, 8}, X11
1 = {12, 16}. Then

ΨX00,X01 = ΨX00
0,X01

0
ΨX00

1,X01
1
Ψπ1; π2

X00
0,X01

1; X00
1,X01

0

ΨX10,X11 = ΨX10
0,X11

0
ΨX10

1,X11
1
Ψπ1; π2

X10
0,X11

1; X10
1,X11

0

Let X0
0 = {1, 3, 5, 7}, X0

1 = {9, 11, 13, 15}, X1
0 = {2, 4, 6, 8}, X1

1 =
{10, 12, 14, 16}, X0

00 = {1, 3}, X0
01 = {5, 7}, X0

10 = {9, 11}, X0
11 = {13, 15},

X1
00 = {2, 4}, X1

01 = {6, 8}, X1
10 = {10, 12}, X1

11 = {14, 16}. Then

ΨX0,X1 = ΨX0
0,X1

0
ΨX0

1,X1
1
Ψπ1; π2

X0
0,X1

1; X0
1,X1

0
,

ΨX0
0,X1

0
= ΨX0

00,X1
00

ΨX0
01,X1

01
Ψπ1; π2

X0
00,X1

01; X0
01,X1

00
,

ΨX0
1,X1

1
= ΨX0

10,X1
10

ΨX0
11,X1

11
Ψπ1; π2

X0
10,X1

11; X0
11,X1

10

Whereas |X00| = |X01| = |X10| = |X11| = 4, then applying (6), we obtain
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ΨX = (1, 9)(1, 13)(5, 9)(1, 5)(9, 13)︸ ︷︷ ︸
Ψ

X00

(3, 11)(3, 15)(7, 11)(3, 7)(11, 15)︸ ︷︷ ︸
Ψ

X01

(1, 3)(5, 7) (1, 7)(5, 3)︸ ︷︷ ︸
Ψ

X000,X010

(9, 11)(13, 15) (9, 15)(13, 11)︸ ︷︷ ︸
Ψ

X001,X011

(1, 15)(5, 11) (9, 7)(13, 3)︸ ︷︷ ︸
Ψ

π1; π2
X000,X011; X001,X010

(2, 10)(2, 14)(6, 10)(2, 6)(10, 14)︸ ︷︷ ︸
Ψ

X10

(4, 12)(4, 16)(8, 12)(4, 8)(12, 16)︸ ︷︷ ︸
Ψ

X11

(2, 4)(6, 8) (2, 8)(6, 4)︸ ︷︷ ︸
Ψ

X100,X110

(10, 12)(14, 16) (10, 16)(14, 12)︸ ︷︷ ︸
Ψ

X101,X111

(2, 16)(6, 12) (10, 8)(14, 4)︸ ︷︷ ︸
Ψ

π1; π2
X100,X111; X101,X110

(1, 2)(3, 4) (1, 4)(3, 2)︸ ︷︷ ︸
Ψ

X000,X100

(5, 6)(7, 8) (5, 8)(7, 6)︸ ︷︷ ︸
Ψ

X001,X101

(1, 8)(3, 6) (5, 4)(7, 2)︸ ︷︷ ︸
Ψ

π1; π2
X000,X101; X001,X100

(9, 10)(11, 12) (9, 12)(11, 10)︸ ︷︷ ︸
Ψ

X010,X110

(13, 14)(15, 16) (13, 16)(15, 14)︸ ︷︷ ︸
Ψ

X011,X111

(9, 16)(11, 14) (13, 12)(15, 10)︸ ︷︷ ︸
Ψ

π1; π2
X010,X111; X011,X110

(1, 16)(3, 14)(5, 12)(7, 10) (9, 8)(11, 6)(13, 4)(15, 2)︸ ︷︷ ︸
Ψ

π1; π2
X00,X11; X01,X10

It is easy to see that such construction of ordered basis results in the fol-
lowing recurrent relations for the number of transpositions in ordered systems
involved in construction.

Consider relation (5). Let |ΨO,E| = r(n), |ΨO1,E1 | = |ΨO2,E2 | = r
(

n
2

)
.

Since |Ψπ1; π2

O1,E2;O2,E1
| = n

2 then r(n) = 2 · r(n
2

)
+ n

2 , and r(2) = 1. Therefore,

|ΨO,E| = r(n) =
n

2
log2 n .

Consider relation (4). Let |ΨO∪E| = l(n), |ΨO| = |ΨE| = l
(

n
2

)
. Then

l(n) = 2 · l
(n

2

)
+ r(n) .

Since also l(4) = 5 (it follows from (6)) then

|Ψn| = l(n) =
n

4
· (log2

2 n + log2 n− 1) = O(n log2
2 n) .

This implies that at n = 2k the ordered basis constructed by such recurrent
way consists of O(n log2

2 n) transpositions. Note that this number differs from
the lower bound estimation for the number of transpositions in ordered bases,
namely, differs from log2 n! only in factor O(log2 n).
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