Construction of a self-dual [94, 47, 16] code

MASAAKI HARADA Department of Mathematical Sciences, Yamagata University, Yamagata 990–8560, JAPAN

RADINKA YORGOVA¹

radinka@ii.uib.no

Department of Informatics, University of Bergen Thormøhlensgate 55, N-5008, Bergen, NORWAY

Abstract. The existences of an extremal doubly even self-dual [96, 48, 20] code and a self-dual [94, 47, 18] code are equivalent. The largest minimum weight among self-dual codes of length 94 was previously known as 14, 16 or 18. In this note, a self-dual [94, 47, 16] code is constructed for the first time.

1 Introduction

A (binary) [n, k] code C is a k-dimensional vector subspace of \mathbb{F}_2^n , where \mathbb{F}_2 is the field of two elements. An [n, k, d] code is an [n, k] code with minimum weight d. A code C is self-dual if $C = C^{\perp}$ where C^{\perp} is the dual code of C. A self-dual code C is doubly even if all codewords of C have weight divisible by four, and singly even if there is at least one codeword of weight $\equiv 2 \pmod{4}$. Note that a doubly even self-dual code of length n exists if and only if n is divisible by eight. It was shown in [9] that the minimum weight d of a doubly even self-dual code of length n is bounded by $d \leq 4[n/24] + 4$. In [10] it is proved that the same bound is valid also for the minimum weight d of a singly even self-dual code of length n unless $n \equiv 22 \pmod{24}$ when $d \leq 4[n/24] + 6$ or $n \equiv 0 \pmod{24}$ when $d \leq 4[n/24] + 2$.

An extremal doubly even self-dual [24k, 12k, 4k + 4] code is known for only k = 1, 2, namely, the extended Golay [24, 12, 8] code and the extended quadratic residue [48, 24, 12] code. It is not known if there exist other extremal doubly even self-dual codes of length 24k. It was shown in [10] that the existences of an extremal doubly even self-dual [24k, 12k, 4k + 4] code and a self-dual [24k - 2, 12k - 1, 4k + 2] code are equivalent. From this viewpoint, it would be interesting to determine the largest minimum weight among self-dual codes of length 24k - 2. The largest minimum weight among self-dual codes of length 70 is known as 12 or 14, and the largest minimum weight among self-dual codes of length 94 was previously known as 14, 16 or 18 (see [4, Table VI], [6, Table 2]).

In this note, a self-dual [94, 47, 16] code is constructed for the first time. Hence the largest minimum weight among self-dual codes of length 94 is 16 or 18.

2 A self-dual [94, 47, 16] code

2.1 Construction

An automorphism of C is a permutation of the coordinates of C which preserves C and the set consisting of all automorphisms of C forms a group called the automorphism group of C. Extremal doubly even self-dual codes with automorphisms of a fixed odd prime order have been widely investigated (see e.g., [8], [11]).

Suppose that σ is an automorphism of order 23 of a self-dual [94, 47, 16] code. By [11, Theorem 1], one can show that σ consists of four 23-cycles together with two fixed points. Using the technique developed by Huffman [8] and Yorgov [11], we have found a self-dual [94, 47, 16] code C_{94} with an automorphism of order 23. The code C_{94} has the following generator matrix:

1	\boldsymbol{a}		a				
		\boldsymbol{a}			1		
				\boldsymbol{a}		1	
	e_1		e_2	e_2			,
		e_1	e_3	e_4			
	f_2	f_3	f_1				
(f_2	f_4		f_1)	

where a is the all-one's vector of length 23, e_i (i = 1, 2, 3, 4) and f_j (j = 1, 2, 3, 4)are the 11×23 circulant matrices M with first rows r:

M	r	M	r
e_1	(10000101001100110101111)	e_2	(11010001001111110100100)
e_3	(10001110110000111010101)	e_4	(10001000010001010011100)
f_1	(11111010110011001010000)	f_2	(10010010111111001000101)
f_3	(11010101110000110111000)	f_4	(1001110010100010001000)

and the blanks are filled up with zero's.

Hence we have the following:

Proposition 1 There is a self-dual [94, 47, 16] code. The largest minimum weight among self-dual codes of length 94 is 16 or 18.

Remark 2 The largest minimum weight among known linear [94, 47] codes is currently 16 (see [7]).

2.2 Weight enumerators

Let C be a singly even self-dual code and let C_0 denote the subcode of codewords having weight $\equiv 0 \pmod{4}$. Then C_0 is a subcode of codimension 1. The Harada, Yorgova

shadow S of C is defined to be $C_0^{\perp} \setminus C$ [2]. There are cosets C_1, C_2, C_3 of C_0 such that $C_0^{\perp} = C_0 \cup C_1 \cup C_2 \cup C_3$ where $C = C_0 \cup C_2$ and $S = C_1 \cup C_3$. Shadows are often used to provide restrictions on the weight enumerators of singly even self-dual codes.

By Theorem 5, 4) in [2], a self-dual [94, 47, 16] code C and its shadow S have the following possible weight enumerators:

$$\begin{split} W_C = &1 + 2\alpha y^{16} + (134044 - 2\alpha + 128\beta) y^{18} \\ &+ (2010660 - 30\alpha - 896\beta + 8192\gamma) y^{20} \\ &+ (22385348 + 30\alpha + 1280\beta - 106496\gamma - 524288\delta) y^{22} \\ &+ (207307788 + 210\alpha + 5376\beta + 581632\gamma + 9961472\delta) y^{24} \\ &+ (1545393276 - 210\alpha - 18048\beta - 1597440\gamma - 88080384\delta) y^{26} + \cdots, \end{split}$$
$$\begin{split} W_S = &\delta y^3 + (\gamma - 22\delta) y^7 + (-\beta - 20\gamma + 231\delta) y^{11} \\ &+ (\alpha + 18\beta + 190\gamma - 1540\delta) y^{15} \\ &+ (1072352 - 16\alpha - 153\beta - 1140\gamma + 7315\delta) y^{19} \\ &+ (140151744 + 120\alpha + 816\beta + 4845\gamma - 26334\delta) y^{23} + \cdots, \end{split}$$

respectively, where $\alpha, \beta, \gamma, \delta$ are integers. By Theorem 5, 3) in [2], we have the restrictions $(\delta, \gamma) = (0, 0), (0, 1), (1, 22)$. In the case $(\delta, \gamma) = (1, 22)$, we have $\beta = -209$ since the sum of two vectors in the shadow is a codeword. To save space, we do not list the possible weight enumerators for each of the three cases.

We have verified that the number of codewords of weight 16 in C_{94} is 6072 and that the minimum weight of the shadow is 15. Hence the weight enumerator of the code C_{94} corresponds to $(\alpha, \beta, \gamma, \delta) = (3036, 0, 0, 0)$. We have verified by MAGMA that C_{94} has automorphism group of order 23.

2.3 A related self-dual code of length 96

Let C be a singly even self-dual code of length $n \equiv 6 \pmod{8}$. Let C^* be the code of length n + 2 obtained by extending C_0^{\perp} as follows:

$$(0,0,C_0) \cup (1,1,C_2) \cup (1,0,C_1) \cup (0,1,C_3)$$

where (x, y, C_i) denotes the set $\{(x, y, z) \in \mathbb{F}_2^{n+2} | z \in C_i\}$. Then C^* is a doubly even self-dual code [1]. In our case, C_{94}^* is a doubly even self-dual [96, 48, 16] code since C_{94} has shadow of minimum weight 15. The code C_{94}^* has the following weight enumerator:

$$\begin{split} &1+9108y^{16}+3071328y^{20}+370937840y^{24}+18637739040y^{28}\\ &+422086556775y^{32}+4552826872672y^{36}+24292762502544y^{40}\\ &+65726907444000y^{44}+91447786444040y^{48}+\dots+y^{96}. \end{split}$$

There are 30 known inequivalent doubly even self-dual [96, 48, 16] codes [3], [4] and [5]. Since C_{94}^* and the 30 known codes have different weight enumerators, C_{94}^* is inequivalent to any of the known codes. We have verified by MAGMA that C_{94}^* has automorphism group of order 23.

References

- R. Brualdi, V. Pless, Weight enumerators of self-dual codes, *IEEE Trans.* Inform. Theory 37, 1991, 1222-1225.
- [2] J. H. Conway, N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, *IEEE Trans. Inform. Theory* 36, 1990, 1319-1333.
- [3] R. Dontcheva, On the doubly-even self-dual codes of length 96, *IEEE Trans. Inform. Theory* 48, 2002, 557-561.
- [4] S. T. Dougherty, T. A. Gulliver, M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory 43, 1997, 2036-2047.
- [5] W. Feit, A self-dual even (96, 48, 16) code, IEEE Trans. Inform. Theory 20, 1974, 136-138.
- [6] P. Gaborit, A. Otmani, Experimental constructions of self-dual codes, Finite Fields Appl. 9, 2003, 372-394.
- [7] M. Grassl, Code tables: Bounds on the parameters of various types of codes, Available online at http://www.codetables.de/.
- [8] W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of length 48, *IEEE Trans. Inform. Theory* 28, 1982, 511-521.
- [9] C. L. Mallows, N. J. A. Sloane, An upper bound for self-dual codes, *Inform. Control* 22, 1973, 188-200.
- [10] E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44, 1998, 134-139.
- [11] V. Y. Yorgov, Binary self-dual codes with automorphisms of odd order, Probl. Pered. Inform. 19, 1983, 11-24 (in Russian); English transl. Probl. Inform. Transm. 19, 1983, 260-270.