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Abstract. A family of rank-metric codes over binary fields with lengths Ns =
2s, s = 0, 1, . . . , is constructed. Codes of length Ns are designed recursively from
codes of length Ns−1. This provides very high degree of symmetry of code matrices.
In turn, it allows to decode corrupted received matrices recursively starting with
small lengths. The construction allows to use many simple algorithms for decoding
in rank metric such as majority rules and similar.

1 Introduction

Rank-metric codes are of interest to communications, cryptography, space-time
coding, network coding, etc., [1, 2, 4, 5, 6]. Symmetric rank-metric codes were
introduced in [7] and investigated in [8]-[14]. Symmetry allows to simplify
decoding and to correct some rank errors beyond the error capability bound.
In this paper, we propose a recursive construction of rank codes over binary
fields starting with length 2. The length is doubled at each step and is equal to
Ns = 2s after step s. In matrix representation, code words are Ns×Ns matrices.
They are constructed by means of Ns−1 ×Ns−1 code matrices obtained at the
previous step. This leads to very high degree of symmetry of code matrices.
First, each code matrix of size 2s × 2s is element wise symmetric. Second, if
this matrix is represented as a 2s−1 × 2s−1 block matrix consisting of blocks
of size 2 × 2, then the matrix will be block wise symmetric for these blocks
and all blocks are element wise symmetric. Further, if the original code matrix
is represented as a 2s−2 × 2s−2 block matrix with blocks of size 22 × 22, then
the matrix will be block wise symmetric for these blocks and all 22 × 22 blocks
are both element wise symmetric and 2× 2 subblocks wise symmetric. Finally,
represent the 2s× 2s code matrix as 2× 2 block matrix with four blocks of size
2s−1 × 2s−1. Then the matrix will be block wise symmetric for these blocks.
Moreover, each block element of the code matrix is in turn a symmetric matrix
with the same properties.

For example, the binary code matrix for length N1 = 2 has the form

V1(x1, x2) =
(

x1 x2

x2 x1 + x2

)
, (1.1)

where x1 and x2 are information bits. Each nonzero 2×2 code matrix has rank
2 and is symmetric.
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Code matrices of length N2 = 4 constructed by our approach have the form

V2(x1, x2, x3, x4) =




x1 x2 x3 x4

x2 x1 + x2 x4 x3 + x4

x3 x4 x1 + x4 x2 + x3 + x4

x4 x3 + x4 x2 + x3 + x4 x1 + x2 + x3




=
(

V1(x1, x2) V1(x3, x4)
V1(x3, x4) V1(x1, x2) + Γ1V1(x3, x4)

)
,

(1.2)

where x1, x2, x3, x4 are information bits. The matrix Γ1 =
(

0 1
1 1

)
provides a

property that each nonzero 4× 4 code matrix has rank 4 and is symmetric. It
can be represented as a 2×2 block matrix with symmetric blocks V1(·, ·) of size
2× 2.

In general, if code matrices Vs−1(x1, . . . , x2s−1) of length Ns−1 = 2s−1

are constructed, then code matrices Vs(x1, . . . , x2s−1 , x2s−1+1, . . . , x2s) of length
Ns = 2s will have the form

Vs(x1, . . . , xNs ) =

(
Vs−1(x1, . . . , xNs−1 ) Vs−1(xNs−1+1, . . . , xNs )

Vs−1(xNs−1+1, . . . , xNs ) Vs−1(x1, . . . , xNs−1 ) + Γs−1Vs−1(xNs−1+1, . . . , xNs )

)
,

(1.3)

where x1, . . . , xNs−1 , xNs−1+1, . . . , xNs are information bits. The matrix Γs−1

of size Ns−1×Ns−1 is calculated using the previous matrix Γs−2. It provides a
property that each nonzero Ns×Ns code matrix has rank Ns and is symmetric.

We will exploit super symmetry to construct new decoding algorithms to
correct rank and array errors.

2 Auxiliary results

2.1 Notations and definitions

Let F2 be a base field and let F2n be an extension of degree n of F2. Let Fn
2n

be a normalized vector space of dimension n over F2n .
The rank norm of a vector g = (g1, g2, . . . , gn), g ∈ Fn

2n , is defined as the
maximal number of coordinates gj which are linearly independent over F2. We
denote the rank norm of g by r(g).

A vector code V ⊂ Fn
qn is any set of vectors. A linear vector code V is a

subspace of Fn
2n .

Let Fn×n
2 be a normalized space of square matrices of order n over Fq. The

rank norm of a matrix M ∈ Fn×n
2 is defined as ordinary rank of this matrix,

i.e., the maximal number of rows (or, columns) which are linearly independent
over F2. We denote the rank norm of M as rank(M).

A matrix code M⊂ Fn×n
2 is any set of binary matrices. A code M is said

to be linear if M is subspace of Fn×n
2 . Given a code M one can construct a
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code MT =
{
MT : M ∈M}

where MT means the transpose of M . A code M
is said to be symmetric if M = MT .

2.2 Relations between vector rank-metric codes and matrix
rank-metric codes

Let g = (g1, g2, . . . , gn), gj ∈ F2n , be a basis of F2n over F2. Then any vector
m = (m1,m2, . . . ,mn) ∈ Fn

n can be uniquely represented as

m = (m1,m2, . . . , mn) = gM = (g1, g2, . . . , gn)M,

where M is the n× n-matrix in Fq. One refers to the matrix M as the matrix
g-representation of the vector m. Note that r(m) = rank(M).

Given a vector code V and a basis g, one can get a corresponding matrix
code M in g-representation as V = gM, and vice versa.

2.3 Self-orthogonal bases

Let
g = (g1, g2, . . . , gn), gj ∈ F2n , (2.4)

be a basis of F2n over F2. Associate with the vector g the n× n-matrix

G =




g1 g2 · · · gn

g
[1]
1 g

[1]
2 · · · g

[1]
n

g
[2]
1 g

[2]
2 · · · g

[2]
n

· · · · · · · · · · · ·
g
[n−1]
1 g

[n−1]
2 · · · g

[n−1]
n




. (2.5)

We use the notation [i] := 2i, if i ≥ 0 and [i] := 2n+i, if i < 0. It is known
[15] that the matrix Gn is non singular.

Definition 1 A basis g = (g1, g2, . . . , gn) is called a self-dual basis if Tr(gigj) =
δij , where Tr(·) is the trace function of F2n into F2 defined as Tr(g) = g+g[1]+
g[2] + · · ·+ g[n−1] ∈ F2, g ∈ F2n .

Definition 2 (Equivalent) A basis g = (g1, g2, . . . , gn) is called a self-dual
basis if

GTG = In,

where GT is the transpose of G and In is the identity matrix of order n.
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Definition 3 A basis g = (g1, g2, . . . , gn) is called a self-orthogonal basis if

GGT = In,

It is clear that a self-dual basis is also a self-orthogonal basis, and vice versa.

Definition 4 A basis g = (g1, g2, . . . , gn) is called a weak self-orthogonal
basis if

GGT = B,

where B is a diagonal matrix in F2n, but not multiple of the identity matrix In.

Note that a weak self-orthogonal basis is not a self-dual basis. For example,
let G =

( 1 γ
1 γ2

)
, where γ is a primitive element of F22 . Then GGT =

( γ 0
0 γ2

)
.

Hence the basis (1 γ) is the weak self-orthogonal one. On the other hand we
have GTG =

(
0 1
1 0

)
. Hence the basis (1 γ) is not self-dual.

2.4 One-dimensional rank codes

Let g = (g1, g2, . . . , gn) be a basis of F2n over F2. We shall use this vector in
two manner. First, it will be used to represent elements of the field F2n . An
element γ ∈ F2n is represented as γ = x1g1+x2g2+· · ·+xngn, where coefficients
xj ∈ F2 are called information bits of γ.

On the other hand, the vector g = (g1, g2, . . . , gn) will be used as the gen-
erator vector of a linear [n, 1, d = n] rank-metric vector code V1. The code V1

consists of the all zero vector 0 = (0, 0, . . . , 0) and code vectors
{gs = αs(g1, g2, . . . , gn), s = 0, 1, . . . , 2n − 2}, where α is a primitive element
of F2n . In terms of the primitive element α the vector g can be rewritten as
g = (αi1 , αi2 , . . . , αin), where i1, i2, . . . , in are some integers.

Find the matrix representation M1 of the vector code V1. Consider the
matrix representation of the vector αg:

αg = gA, (2.6)

where A is the (n × n)-matrix in F2. It follows, that α is an eigenvalue and g
is an eigenvector of A. Hence, A has as the characteristic polynomial a monic
primitive polynomial of degree n over F2. Moreover, all non-zero code vectors
are given by

αsg = gAs, s = 0, 1, . . . , 2n − 2. (2.7)

Therefore the rank-metric matrix code M1 consists of the all zero matrix
O and code matrices {As s = 0, 1, . . . , 2n − 2}.



112 ACCT2008

If an element γ = x1g1 + x2g2 + · · · + xngn, then the corresponding code
matrix is

M(γ) = x1A
i1 + x2A

i2 + · · ·+ xnAin .

Let g = (g1, g2, . . . , gn) be a (weak) self-orthogonal basis of F2n over F2.
Then the matrix A defined above is the symmetric matrix (see, [12]).

2.5 A recursive construction of a weak self-orthogonal basis –
the vector representation

As mentioned before, a weak self-orthogonal basis provides the symmetry of the
matrix A. Let Ns = 2s, qs = 2Ns , s = 1, 2, . . . . We construct sequentially bases
for the fields Fq2 ⊂ Fq3 ⊂ · · · ⊂ Fqs . Assume that the weak self-orthogonal basis
is already constructed for the field Fqs :

g(Ns) = (g1, g2, . . . , gNs) (2.8)

Choose in the superfield Fqs+1 an element fNs+1 of order qs + 1. Construct the
vector

g(Ns+1) = (g1, g2, . . . , gNs , gNs+1, gNs+2, . . . , gNs+1), (2.9)

where (gNs+1, gNs+2, . . . , gNs+1) = (fNs+1g1, fNs+1g2, . . . , fNs+1gNs).

Lemma 1 The vector g(Ns+1) is a weak self-orthogonal basis for the field
Fqs+1.

Proof. Let G(Ns) be the associated matrix of the vector g(Ns):

G(Ns) =




g1 g2 · · · gNs

g
[1]
1 g

[1]
2 · · · g

[1]
Ns

g
[2]
1 g

[2]
2 · · · g

[2]
Ns

· · · · · · · · · · · ·
g
[Ns−1]
1 g

[Ns−1]
2 · · · g

[Ns−1]
Ns




.

We have G(Ns)G(Ns)T = Λ, where Λ is a diagonal matrix.
It is easy to show that the associated matrix G(Ns+1) of the vector g(Ns+1)

is of the form

G(Ns+1) =

[
G(Ns) FG(Ns)

G(Ns) FqsG(Ns)

]
, (2.10)

where F = diag[fNs+1, f
[1]
Ns+1, . . . , f

[Ns−1]
Ns+1 ] is the diagonal matrix. Note that

Fqs+1 = INs .
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Calculate the product

G(Ns+1)G(Ns+1)
T =

[
G(Ns)G(Ns)T +FG(Ns)G(Ns)T F G(Ns)G(Ns)T +FG(Ns)G(Ns)T Fqs

G(Ns)G(Ns)T +FqsG(Ns)G(Ns)T F G(Ns)G(Ns)T +FqsG(Ns)G(Ns)T F22
s

]

=




Λ(INs + F2) Λ(INs + Fqs+1)

Λ(INs + Fqs+1) Λ(INs + Fqs+1)




=

[
Λ(INs + F2) ONs

ONs Λ(INs + Fqs+1)

]
.

(2.11)

This matrix is diagonal. Therefore the basis g(Ns+1) is the weak self-orthogonal
basis.

We have to choose an element fNs+1 ∈ Fqs+1 of order qs+1. Consider the last
component gNs ∈ Fqs ⊂ Fqs+1 of the basis g(Ns). Assume that TrFqs

(gNs) = 1.
Consider the polynomial fs(x) = x2 + xgm

Ns
+ 1, where m = 2Ns−1 − 1.

Lemma 2 The polynomial fs(x) is irreducible over the field Fqs. Hence its
roots belong to the field Fqs+1. Moreover, the order of roots is qs + 1.

Proof. Consider the polynomial r(x) = fs(xgm
Ns

) = g2m
Ns

(x2 + x + g−2m
Ns

) =
g2m
Ns

(x2+x+gNs). This polynomial is irreducible over Fqs because TrFqs
(gNs) =

1. So is the polynomial fs(x). Further, by fNs+1 denote a root of fs(x).
Another root is f qs

Ns+1. We have by Viète theorem fNs+1 · f qs

Ns+1 = f qs+1
Ns+1 = 1,

or, ord(fNs+1) = qs + 1.

By construction, the last component of the basis g(Ns+1) is gNs+1 = fNs+1gNs .

Lemma 3 TrFqs+1
(gNs+1) = 1.

Proof. By definition, we have

f2
Ns+1 + fNs+1g

m
Ns

+ 1 = 0, (2.12)

where m = 2Ns−1 − 1. Multiply this equation by g2
Ns

. We obtain

g2
Ns+1

+ gNs+1g
2Ns−1

Ns
+ g2

Ns
= 0. (2.13)

By Viète theorem, gNs+1 + gqs

Ns+1
= g2Ns−1

Ns
. Hence TrFqs

(gNs+1 + gqs

Ns+1
) =

TrFqs
(g2Ns−1

Ns
) = TrFqs

(gNs) = 1. On the other hand,

TrFqs
(gNs+1 + gqs

Ns+1
) =

Ns−1∑

i=0

(gNs+1 + gqs

Ns+1
)2

i
=

Ns+1−1∑

i=0

g2i

Ns+1
= TrFqs+1

(gNs+1).
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Example 1 For s = 1, N1 = 2, a weak self-orthogonal basis is

g(N1) = (g1, g2) = (1, g2), (2.14)

where g2 is a root of the polynomial f(x) = x2 + x + 1.
For s = 2, N2 = 4, a weak self-orthogonal basis is

g(N2) = (g1, g2, g3, g4) = (1, g2, f3, f3g2), (2.15)

where g3 = f3 is a root of the polynomial f1(x) = x2 + xg2 + 1 and TrFq2
(g4) =

TrFq2
(f3g2) = 1.

For s = 3, N3 = 8, a weak self-orthogonal basis is

g(N3) = (g1, g2, g3, g4, g5, g6, g7, g8) = (1, g2, g3, g4, f5, f5g2, f5g3, f5g4), (2.16)

where g5 = f5 is a root of the polynomial f2(x) = x2 + xg7
4 + 1 and TrFq3

(g8) =
TrFq3

(f5g4) = 1.

2.6 A recursive construction of a weak self-orthogonal basis –
the matrix representation

The matrix representation can be obtained from the vector representation if we
replace elements gj in the basis by suitable matrices. Note that if an element
β ∈ Fqs is represented as a Ns × Ns matrix B over the base field F2, then
being considered as an element of the superfield Fqs+1 its representation will be
a block-diagonal Ns+1 ×Ns+1 matrix

[
B O
O B

]
.

Example 2 For s = 1, N1 = 2, the vector basis (2.14) is replaced by the matrix
basis

IN1 =
[
1 0
0 1

]
, G2(N1) =

[
0 1
1 1

]
. (2.17)

The corresponding code matrix is given by Eq. (1.1).
For s = 2, N2 = 4, the vector basis (2.15) is replaced by the matrix basis

IN2 =
[ IN1

ON1
ON1

IN1

]
, G2(N2) =

[ G2(N1) ON1

ON1
G2(N1)

]
,

G3(N2) =
[ ON1

IN1

IN1
G2(N1)

]
, G4(N2) =

[ ON1
G2(N1)

G2(N1) G2(N1)2

]
.

(2.18)

The corresponding code matrix is given by (1.2).
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For s = 3, N3 = 8, the vector basis (2.16) is replaced by the matrix basis

IN3 =
[ IN2

ON2
ON2

IN2

]
, G2(N3) =

[ G2(N2) ON2

ON2
G2(N2)

]
,

G3(N3) =
[ G3(N2) ON2

ON2
G3(N2)

]
, G4(N3) =

[ G4(N2) ON2

ON2
G4(N2)

]
,

G5(N3) =
[ ON2

IN2

IN2
G4(N2)7

]
, G6(N3) =

[ ON2
G2(N2)

G2(N2) G4(N2)7G2(N2)

]
,

G7(N3) =
[ ON2

G3(N2)

G3(N2) G4(N2)7G3(N2)

]
, G8(N3) =

[ ON2
G4(N2)

G4(N2) G4(N2)8

]

. (2.19)

The corresponding code matrix is given by

V3(x1, . . . , x8) =
(

V2(x1, . . . , x4) V2(x5, . . . , x8)
V2(x5, . . . , x8) V2(x1, . . . , x4) + Γ2V2(x5, . . . , x8)

)
, (2.20)

where

Γ =




0 1 1 1
1 1 1 0
1 1 1 1
1 0 1 0


 .

3 Decoding super-symmetric rank-metric codes

Here we consider decoding one-dimensional rank-metric matrix codes. Let
Vs(x1, . . . , xNs) be a code matrix of rank Ns and E is an error matrix of
size Ns × Ns over F2. If a received matrix is Y = Vs(x1, . . . , xNs) + E and
rank(E) = t ≤ Ns−1 − 1, then standard methods (see, [1] and others) allow to
correct all such errors.

On the other hand, use of Eq. (1.3) and represent E as
(

E11 E12
E21 E22

)
. Then

Y =

(
Vs−1(x1 . . . xNs−1) + E11 Vs−1(xNs−1+1 . . . xNs) + E12

Vs−1(xNs−1+1 . . . xNs) + E21 Vs−1(x1 . . . xNs−1) + Γs−1Vs−1(xNs−1+1 . . . xNs) + E22

)
.

(3.21)

One can see that decoding the Ns × Ns code matrices can be reduced to
decoding several code matrices of order Ns−1 = Ns/2. Namely, we have to de-
code the code submatrix Vs−1(x1 . . . xNs−1) depending only on half information
variables x1, . . . , xNs−1 . It satisfies conditions from Eq. (3.21):

Vs−1(x1 . . . xNs−1) + E11 = Y11,
Vs−1(x1 . . . xNs−1) + E22 + Γs−1E12 = Y22 + Γs−1Y12,
Vs−1(x1 . . . xNs−1) + E22 + Γs−1E21 = Y22 + Γs−1Y21.

(3.22)
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Similarly, the code submatrix Vs−1(xNs−1+1 . . . xNs) satisfies conditions

Vs−1(xNs−1+1 . . . xNs) + E12 = Y12,
Vs−1(xNs−1+1 . . . xNs) + E21 = Y21,

Vs−1(xNs−1+1 . . . xNs) + E11 + Γ−1
s−1E22 = Y11 + Γ−1

s−1Y22.

(3.23)

If min{rank(E12), rank(E21), rank(E22 + Γs−1E21)} ≤ Ns−2 − 1 and
min{rank(E11), rank(E22 + Γs−1E12), rank(E11 + Γ−1

s−1E22)} ≤ Ns−2 − 1, then
decoding will be successful.

Note that rank(E) of the original error matrix may be greater than Ns−1−1.
Hence the symmetry of a code matrix Vs(x1 . . . xNs) allows to correct many rank
errors beyond the one half distance bound. For example, the code
V3(x1, x2, x3, x4, x5, x6, x7, x8) has rank distance 8 and can correct all rank er-
rors up to rank 3. The error matrix

E =




1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0




has rank 6 and can not be corrected by general fast algorithms. But Eq.’s (3.22)
and (3.23) allow to correct this error. On the other hand, the error matrix

E =




1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0




has rank 3 and can be corrected by general fast algorithms. But Eq.’s (3.22)
and (3.23) do not allow to correct this error. Therefore general algorithms and
symmetry algorithms should be used in common: first a general algorithm but
if it failes use a symmetry algorithm.

The proposed approach can be iterated until we get the best conditions from
the point of view of complexity.
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4 Conclusion

We proposed one-dimensional rank-metric matrix codes generated by weak self-
orthogonal bases. These codes allow to correct not only all errors of rank not
greater than b(d− 1)/2c but also many specific (namely, symmetric) errors
beyond this bound.

References

[1] E. M. Gabidulin, Theory of codes with maximum rank distance, Probl.
Inform. Transm. 21, 1985, 3-14.

[2] E. M. Gabidulin, A. V. Paramonov, O. V. Tretjakov, Ideals over a non-
commutative ring and their application in cryptology, Lect. Notes Comp.
Sci. 547, Adv. Crypt., Proc. Eurocrypt91, Brighton, UK, 1991, 482-489.

[3] E. M. Gabidulin, A fast matrix decoding algorithm for rank-error-
correcting codes, (Eds G. Cohen, S. Litsyn, A. Lobstein, G. Zemor), Lect.
Notes Comp. Sci. 573, Alg. Coding, Springer-Verlag, Berlin, 1992, 126-132.

[4] E. M. Gabidulin, M. Bossert, P. Lusina, Space-time codes based on rank
codes, Proc. IEEE Intern. Symp. Inform. Theory, 2000, Sorrento, Italy,
283.

[5] R. Koetter, F. R. Kschischang, Coding for errors and erasures in random
network coding, Proc. IEEE Intern. Symp. Inform. Theory, Nice, France,
2007, 791-795.

[6] E. M. Gabidulin, N. I. Pilipchuk, Error and erasure correcting algo-
rithms for rank codes, Des., Codes Crypt., Springer Netherlands, DOI
10.1007/s10623-008-9185-7. Online: 11 March 2008.

[7] E. M. Gabidulin, N. I. Pilipchuk, Representation of a finite field by sym-
metric matrices and applications, Proc. Eighth Intern. Workshop ACCT,
2002, Tsarskoe Selo, Russia, 120-123.

[8] E. M. Gabidulin, N. I. Pilipchuk, Transposed rank codes based on sym-
metric matrices, Proc. WCC2003, 2003, Versailles (France), 203-211.

[9] E. M. Gabidulin, N. I. Pilipchuk, A new method of erasure correction by
rank codes, Proc. IEEE Intern. Symp. Inform. Theory, Yokohama, Japan,
2003, 423.

[10] E. M. Gabidulin, N. I. Pilipchuk, Symmetric rank codes, Probl. Inform.
Transm. 40, 2004, 3-17.



118 ACCT2008

[11] E. M. Gabidulin, N. I. Pilipchuk, Correcting of rank erasures by sym-
metrization and information sets, Proc. Ninth Intern. Workshop ACCT,
2004, Kranevo, Bulgaria, 333-337.

[12] E. M. Gabidulin, N. I. Pilipchuk, Symmetric matrices and codes correcting
rank errors beyond the

⌊
d−1
2

⌋
bound, Discr. Appl. Math. 154, 2006, 305-

312.

[13] A. Kshevetskiy, Information set decoding for codes in rank metric, Proc.
Ninth Intern. Workshop ACCT, 2004, Kranevo, Bulgaria, 254-259.

[14] N. I. Pilipchuk, E. M. Gabidulin, Decoding of symmetric rank codes by
information sets, Proc. Tenth Intern. Workshop ACCT, 2006, Zvenigorod,
Russia, 214-219.

[15] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes,
8th ed, North Holland Press, Amsterdam, 1993.


