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Abstract. We present a practical expected usually quartic time algorithm to re-
cover the structure of an algebraic geometry code defined over a hyperelliptic code
of genus g ≤ 2. Its main application is an attack of the McEliece cryptosystem based
on algebraic geometry codes defined over curves of small genus. Our algorithm is a
adaptation of the well-known Sidelnikov-Shestakov algorithm [6].

1 Introduction

In 1978, R. J. McEliece presented the first version of the cryptosystem which
was to become the reference in public key cryptography based on coding theory
[2]. The main version of McEliece’s scheme uses Goppa codes. However, many
other codes families have been studied to fit in McEliece’s system.

The choice of a different code was often motivated by the goal to provide
better security for a given key size. The most basic measure for security of
that type of cryptosystem is the cost to decode the code with (a refined version
of) information set decoding to the decoding bound with a given fixed key size
(which is the amount of memory needed to store a generator matrix).

It is, however, important to be aware of the fact that this direct-decoding
measure does not take into account the possibility that an attacker may at-
tempt to recover the structure of the code instead of trying to break the system
by attempting to decode an unstructured linear code. The possibility of doing
so depends on the code that has been used in the construction. Efficient struc-
tural attacks have been developed for example against Reed Solomon codes by
Sidelnikov and Shestakov [6], then against concatenated codes by Sendrier [5],
and against Reed-Muller codes by Minder and Shokrollahi [4].

Since structural attacks tend to be very effective if applicable, a difficult
task faced by the designer of McEliece-type cryptosystems is to chose a family
of codes which has a good tradeoff between rate and correction capability (and
is thus resistant against direct decoding attacks) while also being structurally
secure.
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When it comes to correction capability at a fixed rate, algebraic geometry
codes are often the best known choice for a given set of parameters.1

The superiority of geometric codes makes them thus a seemingly excellent
building block for McEliece type cryptosystems, and it is therefore important
to the researchers in the field to know whether and to what extent these codes
lead to secure cryptosystems.

In this paper, we show that curves of very low genus g (more precisely,
g ≤ 2) are a bad choice, and that they can be broken with very high proba-
bility in heuristic expected polynomial (usually quartic) time. Specifically, this
breaks some of the Janwa-Moreno parameters [1]. A predecessor of this attack
which worked for g = 1 was presented in [3] and was partly based on earlier,
unpublished ideas by Bleichenbacher, Melnik and Shokrollahi. Since the case
g = 0 (Reed Solomon codes) was taken care of by Sidelnikov and Shestakov
[6], we restrict our attention in this paper to the case g = 2 and we present
an algorithm which attacks the cryptosystem in time O(n4) binary operations,
where n is the length of the ciphertext block.

For our attack to work, a few additional assumption on the code have to
be made, such as the requirement that the blocklength n be reasonably close
to maximal for the given curve. Since this covers the most interesting cases, it
does not appear to be a severe restriction.

It is in principle possible to run our attack on hyperelliptic curves of genus
larger than two, but in its current form only at a large cost in both running time
and success probability. We have not investigated the question closely, and it
may well be that already for hyperelliptic curves of genus 3, our attack is not
all that interesting in its current form. Our preliminary opinion on the matter
is that without substantial improvements, this kind of attack is not applicable
to codes defined over sufficiently complicated curves.

In section 2, we recall mathematical concepts and definitions. In section 3,
we present the McEliece cryptosystem in the setting of hyperelliptic codes, and
in section 4, our attack will be exposed. We will then present our conclusions
in section 5.

2 Definitions and notations

2.1 Notions of algebraic geometry

Let X be a hyperelliptic curve of genus g = 2 over A2(Fq), defined by the
equation:

y2 + G(x)y = F (x), with deg(F ) = 2g + 1, and deg(G) ≤ g.

1We ignore graph based codes here, because they are structurally weak.
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A divisor ∆ over X is a formal finite sum of points of X with positive and
negative multiplicities:

∆ =
∑

P∈X
nP 〈P 〉, nP ∈ Z.

The degree of a divisor is the sum of the multiplicities of the points in the
divisor:

deg(∆) =
∑

P∈X
nP .

Any rational function f over X has an associated divisor div(f) which is ob-
tained by adding every zero of f and subtracting every pole (counted with
multiplicity in either case), i.e.,

div(f) =
∑

P∈X
ordP (f)〈P 〉.

For every rational function, we have deg(div(f)) = 0, but the converse is not
true in general. The Jacobian group of X is defined as the group:

Jac(X ) = Divisors of degree 0/divisors of rational functions.

The Generalized Hasse-Weil theorem states that

Jac(X ) ' G =
Z

d1Z
× · · · × Z

d2gZ
, with d1| . . . |d2g, d1|q − 1,

and that
(
√

q − 1)2g ≤ ‖]G‖ ≤ (
√

q + 1)2g.

2.2 Geometric codes

Let ∆ be a divisor of degree k + g − 1 over X . We define the associated linear
space L(∆):

L(∆) = {f ∈ Fq(X )|div(f) + ∆ ≥ 0} ∪ {0}
The Riemann-Roch theorem states that L(∆) is a vector space of dimension k
if k ≥ g − 1. (We shall always assume k ≥ g − 1 in the sequel, the other case
being of no interest for the problem at hand.)

Given a set (P1, . . . , Pn) of distinct rational points on X , we can now define
the associated geometric code AGC(X , ∆, (P1, . . . , Pn)) as:

AGC(X ,∆, (P1, . . . , Pn)) = {(f(P1), . . . , f(Pn))|f ∈ L(∆)}
This is a linear code of length n, of dimension k, and minimal distance d ≥
n− k− g + 1. Furthermore, this code can be decoded in polynomial time up to
its correction capability t = n−k−g

2 . See, e.g., [7].
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3 The McEliece cryptosystem on geometric codes

A McEliece type cryptosystem on geometric codes can be defined as follows:
Fix blocklength n and dimension k. Select a random curve X of genus 2 having
at least n + 1 rational points, and randomly select distinct rational points
P1, . . . , Pn on X .

Let ∆ be a divisor of degree k + g − 1, and whose support is disjoint from
the points Pi. This defines a code

C := AGC(X , ∆, (P1, . . . , Pn)).

Now let G be a random generator matrix of C, computed by multiplying a
canonical generator matrix for this code on the left with an invertible k × k-
matrix with coefficients in Fq.

This generator matrix G then serves as public key. The code parameters
X ,∆, (P1, . . . , Pn) are the private key. A message x ∈ Fk

q is encrypted by
computing y := xG+e, where e is a random weight t = (n−k−g)/2 error vector.
The legitimate receiver who knows the secret parameters X , ∆, P1, . . . , Pn can
recover x by applying a decoding algorithm to C, and thus computing xG. Given
xG, the value of x can be recovered by solving a system of linear equations.

4 An attack against geometric codes of genus 2

Our goal is to recover a private key given the public key. In our setting this
means the following: The attacker is given a generator matrix G of a hyper-
elliptic code C′ of unknown parameters X ′, ∆′, (P ′

1, . . . , P
′
n). Inspecting G, he

then finds a (typically different) set of parameters X , ∆, (P1, . . . , Pn), such that
the code

C := AGC(X , ∆, (P1, . . . , Pn))

is just a directional scaling of C′, i.e., there are nonzero constants c1, . . . , cn such
that any codeword (y1, . . . , yn) ∈ C corresponds to a codeword (c1y1, . . . , cnyn) ∈
C′.

He then finds the scaling coefficients (c1, . . . , cn), and this enables him to
use the decoder for C to decode codewords for C′, thus breaking the system.

4.1 Outline of the attack

Our algorithm works in four steps:

1. Recovering the group structure. In this stage we sample minimum weight
codewords in order to collect linear equations on elements of the Jacobian.
Given enough such relations, we can retrieve the finite group structure of
the Jacobian G.
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2. Recovering the curve equation. We then use the Jacobian structure, along
with a few additional carefully chosen minimum weight codewords, in
order to get conditions on the coordinates of a few points of the curve.

We then guess the coordinates of three points, and compute from this
guess the coordinates of a larger set of points using the precomputed
conditions. If the guess is correct, we can draw a hyperelliptic curve
passing through our points. Otherwise we know that the guess is wrong,
and we retry with another guess.

3. Recovering the coordinates of all the evaluation points. It is now possi-
ble, from the Jacobian structure, and the curve equation, to retrieve the
coordinates of all points in the evaluation set.

4. Computing the scaling coefficients.

For all the steps to work, we will need additional assumptions. First, we assume
that we have many evaluation points, i.e., that n is close to the number of
rational points on X .

Second, we will assume that gcd(k+g−1, |G|) = 1. Notice that we can force
this latter condition to hold by working on a shortened version of the code, if
necessary.

Third, we assume that the true minimum distance of the code is indeed
n− k − g + 1, and that many such codewords exist. Empirical evidence shows
that this is virtually always true in our setting.

4.2 Preliminaries: code invariance

The parameters of a given geometric code are not unique : It is actually possible
to generate the same code using a different evaluation set and a different divisor.
This is very useful to the cryptanalyst, because it means that we can arbitrarily
select some of the parameters we seek, and focus our search on the other ones.

In particular, we have AGC(X ′, ∆′, (P ′
1, . . . , P

′
n)) = AGC(X , ∆, (P1, . . . , Pn))

if there exists a curve isomorphism from X ′ to X which maps P ′
i to Pi and ∆′

to ∆.
Let u, v, a, b, c ∈ Fq. If g = 2, then the mapping

(x, y) 7→ (u2x + v, u2g+1y + ax2 + bx + c)

is a curve isomorphism. If we arbitrarily select 2 points, and the Y -coordinate
of a third, for example x1, x2, y1, y2, y3 of P1, P2, P3, then with probability 1/2
there exists such an isomorphism which maps P ′

i to Pi.
So we can arbitrarily fix P1, P2, y3, and still have

AGC(X ′, ∆′, (P ′
1, . . . , P

′
n)) = AGC(X , ∆, (P1, . . . , Pn)).
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for some x3, P4, . . . , Pn,X ,∆ with probability 1/2.
Furthermore, because gcd(k + g − 1, |G|) = 1, we can assume ∆ = (k + g −

1)∆0, where ∆0 is a divisor of degree 1.

4.3 First step: recovering the Jacobian structure

We know that Jac(X ) ' G = Z
d1Z × · · · × Z

d2gZ . In this step, we will recover the
values of d1, . . . , d2g, along with the images in G of some particular elements of
the Jacobian by an unknown isomorphism ϕ.

We generate minimum weight codewords, i.e., we compute x ∈ C such that
|x| = n− k − g + 1. For general codes, finding minimum weight words is hard,
but in our specific case we need only O(n2) operations in Fq on the average to
find a single word with the desired property.

Let x be such a codeword, and write f ∈ L(∆) the associated rational
function (i.e., the function such that xi = f(Pi) for 1 ≤ i ≤ n).

If xi1 = · · · = xik+g−1
= 0, then

f(Pi1) = · · · = f(Pik+g−1) = 0,

and so
div(f) = 〈Pi1〉+ · · ·+ 〈Pik+g−1

〉 − (k + g − 1)∆0. (1)

Notice that the minimality of x implies equality in (1) rather than just the
greater-than relation that holds for any word and its associated function.

If we set z̃i = ϕ(〈Pi〉 −∆0) in G, we have

k+g−1∑

j=0

z̃ij = 0.

With many (slightly more than n) equations of this form, we are able to recover
the structure of the group G, i.e., the values of d1, . . . , d2g. This is true because
a random system of overdetermined linear equations does not have any solution
in Z/mZ for arbitrary m; but our system has solutions in Z/diZ.

One technique to recover the di is thus to select several systems with only
n equations, and compute the determinant of the associated matrix; it will
always be a multiple of d1 . . . d2g, and so we can find the di by taking the gcd of
several such determinants. Only few determinants are needed in practice, but
the computation of a determinant is usually O(n4) binary operations.

We can also solve the system to get the values of all the z̃i. However, the
map ϕ is still unknown at this point.

We now want to determine in G the value of δ0 = ϕ(∆0 − 〈O〉). We use a
statistical test to do this. Since most rational points are in the set {P1, . . . , Pn},
the probability that for a random index i, there is an index j, such that Pi and
Pj are opposites of one another is 1− ε, where ε is upper bounded by twice the
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number of points not in {P1, . . . , Pn} over the total number of rational points
of X . If Pi and Pj are indeed opposites, then 〈Pi〉 + 〈Pj〉 = 2〈O〉. It follows
that z̃i + z̃j = −2δ0 in this case. For random indices i, j, the probability that
z̃i + z̃j = −2δ0 is thus at least (1−ε)/n. At most n/(1−ε) values can have that
large a probability to be the equal to of z̃i + z̃j , so in the worst case we have
n/(1− ε) candidates for −2δ0, but we can expect that the set of sums behaves
more randomly, and that we are able to extract the unique correct value of
−2δ0 from the set of sums of all pairs. So we now know the value of δ0, and we
can compute all the values zi = ϕ(〈Pi〉 − 〈O〉) = z̃i + δ0.

This test to recover the zi usually runs in O(n2) multiplications over the
base field.

4.4 Second step: Recovering the curve equation

We now generate two codewords v and w of weight (n− k − g + 1), such that
v and w have exactly k + g − 3 zero positions in common.

In order to do this, we first build a set I ⊂ [1, n] of size k + g − 3 such
that

∑
i∈I

zi = (k + g − 1)δ0. We now select two couples of opposite points, i.e.,

(i1, i2, j1, j2) ∈ [1, n] so that zi1 + zi2 = zj1 + zj2 = 0.
Then we know that there exists a codeword v ∈ C with zero positions on

I∪{i1, i2}. We can easily compute v from the generator matrix G. By the same
method, we compute the codeword w ∈ C with zero positions on I ∪ {j1, j2}.

Now that we have two such codewords v and w, if we call f1 and f2, their
respective (unknown) associated rational functions in L((k + g − 1)∆0), then
there exists a, b, c, d ∈ Fq so that f1

f2
= ax+b

cx+d .
The functions f1 and f2 are unknown but, by definition of f1 and f2, for

every i such that wi 6= 0, we have f1

f2
(Pi) = vi

wi
= axi+b

cxi+d .
All the vi and wi are known. So, if we know the coordinates (xi, yi) of three

points (say, Pk1 , Pk2 , Pk3), then we can first recover the constants a, b, c, d from
the preceding equation on indexes k1, k2, k3. We can then use those constants
to recover the X-coordinates of many other Pi.

The Y -coordinate of Pi can be recovered by collinearity conditions: If, for
example, we have zk1 +zk2 +zi+zi′+zi′′ = 0 with a curve of genus g = 2, we can
deduce that a straight line passes through Pk1 , Pk2 , Pi, Pi′ and Pi′′ . Then, if
we know the coordinates of Pk1 , Pk2 , Pk3 , we can recover xi from the preceding
equation, and thereafter, yi is deduced from the alignment of Pk1 , Pk2 , Pi.

So the indices k1, k2, k3 must be chosen carefully. We will need zk1 , zk2 , zk3

to define three different 5-points collinearity equations, involving indexes which
are non-zero positions of the word w. We will also have to check that the set
of 12 points involved in those collinearity equations generates the group G.

Once these indices are chosen, we can guess and try the coordinates (x, y)
of points Pk1 , Pk2 , Pk3 : We arbitrarily choose the values of their 6 coordinates.
Then, with this set of values, we determine the constants a, b, c, d from our
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evaluation equation. Then, by the use of the evaluation equation and collinear-
ity equations, we are able to determine the coordinates of 9 points Pi on the
curve. We now try to build a hyperelliptic curve of genus 2 passing through
our 12 points (the 3 we guessed, and the 9 we computed). If such a curve
exists, then with great probability, our coordinates guess is correct and we
proceed to the step 3 of our cryptanalysis. If such a curve does not exist, it
means that our coordinates guess is wrong, and we try a new set of values
(xk1 , yk1 , xk2 , yk2 , xk3 , yk3).

Actually, we don’t have many guesses to make in order to recover a valid
curve. As we have seen precedently, if we arbitrarily choose (xk1 , yk1 , xk2 , yk2 , yk3)
and try all the values for xk3 ∈ Fq, we have a probability 1/2 to obtain three
points (P1, P2, P3) such that there exists a curve isomorphism from X to X ′
which maps (P1, P2, P3) to (P ′

1, P
′
2, P

′
3). So, with q guesses, we have proba-

bility 1/2 to find a curve and a set of points so that C = AGC(X , (k + g −
1)∆0, (P1, . . . , Pn), (c1, . . . , cn)).

Since q ≈ n, and processing one guess takes constant time, the total cost of
the guessing step without preprocessing is O(n) multiplications over the base
field. The preprocessing, which consists of finding the words v, w is O(n3)
multiplications if a naive algorithm to find I is used.

4.5 Third and fourth step: recovering the remaining evaluation
points and the distortion coefficients

We now know the equation of the hyperelliptic curve X , along with the coordi-
nates of a dozen points Pi on X . We also know the values of all the zi = ϕ(〈Pi〉)
where ϕ is an unknown isomorphism.

The third step is then quite easy. For each Pi whose coordinates are still
unknown, we write zi as a sum of zj corresponding to points whose coordinates
are known. Computing the same sum with couples of points, we will find the
coordinates of Pi. The value of the divisor ∆0 will be computed the same way
from the value of δ0 = ϕ(∆0 − 〈O〉). The cost for computing the coordinates
of one point is a constant, so the cost of this step is O(n) multiplications over
the base field.

When everything else is known, computing the distortion coefficients ci is
a simple linear algebra problem, which can be solved by a matrix inversion.
The cost of this step is O(n3) multiplications, if we use a basic matrix inversion
algortihm.

5 Conclusion

We have presented a polynomial time attack against a version of McEliece
cryptosystem based on hyperelliptic codes of genus 2. As the first step of
our algorithm has complexity O(n4) in the usual case, the complexity of the
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presented attack is O(n4) binary operations. Our attack is based on many
probabilistic but reasonable assumptions, for example that the collected linear
relations in step 1 behave like random relations modulo arbitrary integers.

Our attack is also restricted to the case where n is close to the number of
rational points on the curve. We do not believe this to be a serious restriction.
Ultimately, chosing small n is just one of many ways for a designer of a cryp-
tosystem to trade efficiency for structural security, and quite possibly not the
best one.

As it stands, the attack does not scale well with the genus. Indeed, for genus
3 the probability that the same attack works on a given instance is already quite
low, even though certainly non-negligible. The fact, many of the steps of the
attack work just fine also on these curves suggests that it is likely possible to
devise almost-always working versions for these curves as well. It would be
interesting to have a more thorough understanding of the fundamental limits
of this kind of attack.
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