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Abstract. A nonempty set of words in a binary Hamming space Fn is called an
r-identifying code if for every word the set of codewords within distance r from
it is unique and nonempty. The smallest possible cardinality of an r-identifying
code is denoted by Mr(n). In this paper, we consider questions closely related to
the open problem whether Mt+r(n + m) ≤ Mt(m)Mr(n) is true. For example, we
show results like M1+r(n + m) ≤ 4M1(m)Mr(n), which improve previously known
bounds. We also obtain a result M1(n + 1) ≤ (2 + εn)M1(n) where εn → 0 when
n → ∞. This bound is related to the conjecture M1(n + 1) ≤ 2M1(n). Moreover,
we give constructions for the best known 1-identifying codes of certain lengths.

1 Introduction

Karpovsky, Chakrabarty and Levitin introduced identifying codes in [6] for lo-
cating malfunctioning processors in multiprocessor architectures. The research
of identifying codes is also inspired by applications to sensor networks and alarm
systems. Nowadays identifying codes are an actively studied topic of its own;
the updated bibliography of identifying codes can be found from [7]. Identifying
codes have been considered in many different graphs; in this paper we consider
the binary Hamming spaces (i.e. binary hypercubes).

We denote by Fn the binary Hamming space of dimension n. The (Ham-
ming) distance between two vectors (called words) x and y in Fn is denoted by
d(x,y). The (Hamming) weight of a word x, is denoted by w(x). The (Ham-
ming) ball of radius r centered at x ∈ Fn is Br(x) = {y ∈ Fn | d(x,y) ≤ r}.

A code of length n is a nonempty subset of Fn. Let C ⊆ Fn be a code. The
I-set of a word x ∈ Fn (with respect to the code C) is defined to be

Ir(x) = Ir(C;x) = Br(x) ∩ C.
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Definition 1 A code C ⊆ Fn is called an r-identifying if for all x ∈ Fn

Ir(C;x) 6= ∅ and for all y ∈ Fn, x 6= y, we have

Ir(C;x) 6= Ir(C;y).

The definition of r-separating codes is similar to the identifying codes, but
here we allow Ir(x) = ∅ for one x ∈ Fn.

The optimal, that is, the smallest possible cardinality of an r-identifying
code of length n is denoted by Mr(n).

Notice that a code C ⊆ Fn is r-identifying if and only if for all x,y ∈ Fn,
x 6= y, we have Ir(C;x) 4 Ir(C;y) 6= ∅ where the notation A 4 B denotes the
symmetric difference of sets A and B, that is, A 4 B = (A \B) ∪ (B \A).

A code C ⊆ Fn is called r-covering if for all x ∈ Fn there is c ∈ C such that
d(x, c) ≤ r (i.e., |Ir(C;x)| ≥ 1). Moreover, if a code C ⊆ Fn has the property
that for all x ∈ Fn |Ir(C;x)| ≥ µ, then the code is called µ-fold r-covering.
The optimal cardinality of an r-covering is denoted by K(n, r). The vast topic
of covering codes have been considered, for instance, in [3].

Let C1 ⊆ Fn and C2 ⊆ Fm be two codes, then their direct sum

C1 ⊕ C2 = {(a,b) | a ∈ C1,b ∈ C2} ⊆ Fn+m.

In [1], the question whether

Mr+t(n + m) ≤ Mr(n)Mt(m) (1)

holds is mentioned as an open problem. In [5] the result is proved for r = t = 1.
In Section 2 of this paper, we consider the problems closely related to the
conjecture (1) in a general case. In particular, we show that Mr+1(n + m) ≤
4Mr(n)M1(m) and also present some numerical improvements on known bounds
on Mr(n). In [1], it is also asked whether M1(n + 1) ≤ 2M1(n) is true. In the
last section, we show that M1(n+1) ≤ (2+εn)M1(n) where εn → 0 as n →∞.

The proofs omitted in this paper are in [4].

2 New code constructions for r-identifying codes

In this section, we will present some direct sum constructions for (r + t)-
identifying codes. The motivation for this comes from the conjecture (1).

Lemma 1 Let C ⊆ Fn be an r-identifying code. Then for all x ∈ Fn there
exists c ∈ C such that d(c,x) = r or r + 1.
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In the subsequent considerations we refer to the following condition for a
given code C:

∀x,y ∈ Fn : It(C;x) \ It−1(C;y) 6= ∅. (2)

We will use the following notations:

• The optimal cardinality of a t-identifying code satisfying the condition
(2) is denoted by M t(n).

• The optimal cardinality of a t-identifying code which is also (t − 1)-
separating and satisfy the condition (2) is denoted by M t,t−1(n).

• The optimal cardinality of a t-identifying code such that for every x ∈ Fn

there exists a codeword exactly at distance t from x is denoted by M ′
t(n).

• We denote by M ′′
1 (n) the optimal cardinality of a 1-identifying and 2-fold

1-covering code. It is clear that M ′′
1 (n) ≤ 2M1(n).

Theorem 1 We have

Mr+t(n + m) ≤
{

Mr(n)M t,t−1(m),
M ′

r(n)M t(m)
(3)

and
Mr+1(n + m) ≤ M ′

r(n)M ′′
1 (m). (4)

Moreover, M ′
r(n) ≤ 2Mr(n). Especially,

Mr+t(n + m) ≤ 2Mr(n)M t(n) (5)
Mr+1(n + m) ≤ 4Mr(n)M1(m). (6)

Proof. Let us first prove the inequalities (3). Let C1 ⊆ Fn be an r-identifying
code and C2 ⊆ Fm be a t-identifying and (t− 1)-separating code satisfying the
condition (2). We will first show that C = C1 ⊕ C2 ⊆ Fn+m is an (r + t)-
identifying code. It is easy to see that C is an (r + t)-covering code, this
implies that Ir(X) = ∅ if and only if X = ∅. Therefore, in order to prove
that C is (r + t)-identifying, it is enough to show that Ir+t(x)4 Ir+t(y) 6= ∅
for all x,y ∈ Fn+m (x 6= y). Let x = (x1,x2), y = (y1,y2) ∈ Fn+m, where
x1,y1 ∈ Fn and x2,y2 ∈ Fm, moreover x 6= y.

1) Suppose first x1 6= y1. Then there exists c1 ∈ Ir(C1;x1) 4 Ir(C1;y1).
Without loss of generality we may assume that c1 ∈ Ir(C1;x1) \ Ir(C1;y1).
Since the code C2 satisfies the condition (2), there exists a codeword c2 ∈ C2

such that c2 ∈ It(C2;x2)\It−1(C2;y2). Hence, (c1, c2) ∈ Ir+t(C;x)\Ir+t(C;y).
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2) Suppose then x1 = y1. By Lemma 1, there exists c1 ∈ C1 such that
d(c1,x1) = r or r + 1. Assume first that d(c1,x1) = r. Since C2 is a t-
identifying code and x2 6= y2, there exists a codeword c2 ∈ C2 such that
c2 ∈ It(x2)4 It(y2). Therefore, (c1, c2) ∈ Ir+t(x)4 Ir+t(y). Assume then that
d(c1,x1) = r + 1. Since C2 is also a (t − 1)-separating code and x2 6= y2,
there exists a codeword c2 ∈ C2 such that c2 ∈ It−1(x2)4 It−1(y2). Hence,
(c1, c2) ∈ Ir+t(x)4 Ir+t(y). Thus, we have proved that C1 ⊕ C2 is an (r + t)-
identifying code.

Let C3 ⊆ Fn be an r-identifying code such that for every x ∈ Fn there
exists a codeword exactly at distance r from it and C4 ⊆ Fm a t-identifying
code satisfying the condition (2). Showing that C3 ⊕ C4 ⊆ Fn+m is an (r + t)-
identifying code is similar to the proof described above. However, in the second
part of the proof we can assume that there always exists a codeword c1 ∈ Fn

such that d(x1, c1) = r.
Let us now move on to the inequality (4). It is easy to see that 1-identifying

and 2-fold 1-covering code satisfies the condition (2) for t = 1. Therefore, the
result immediately follows from (3).

For the estimate M ′
r(n) ≤ 2Mr(n), see [4]. ¤

In [2, Theorem 3] it is proved that when 1 ≤ t < m ≤ r we have

Mr+t(n + m) ≤ 2mMr(n). (7)

Assume first t = 1. Since C = Fm \ {1m} is clearly a 1-identifying and 0-
separating code satisfying the condition (2), we have, by (3), that Mr+1(n +
m) ≤ (2m−1)Mr(n). Using (6) we obtain further improvements to (7). Namely,
we know that M1(m) ≤ 9

2 · 2m

m+1 < 2m−2− 1 when m ≥ 18 and, by the tables of
[2], this also holds for m ≥ 8.

In the next theorem we improve (7) using (5) when t ≥ 2 and m ≥ 2t. We
give an upper bound for M t(m) using a method inspired by Delsarte and Piret
[3, p. 320].

Theorem 2 Let m ≥ 2t.

Mr+t(n + m) ≤ 2

⌈
2m

min{(m
t

)
, 2

(
m−1

t

)}2m ln 2

⌉
Mr(n).

In what follows, we develop further the direct sum approach with the aid
of k-locating-dominating codes. It is a class of codes introduced by Slater (see
[8]) closely related to identifying codes; a code C ⊆ Fn is k-locating-dominating
if Ir(C;x) is nonempty and Ir(C;x) 6= Ir(C;y) for all non-codewords x,y ∈
Fn \ C.
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Theorem 3 Let C1 ⊆ Fn be a 1-identifying code which is also a 2-fold 1-
covering and has the property that it is k-locating-dominating for all 1 ≤ k ≤
r + 1 ≤ n− 2. Let C2 ⊆ Fm be an r-identifying code. Then C1⊕C2 ⊆ Fn+m is
an (r + 1)-identifying code.

The condition that the identifying code C1 is a 2-fold 1-covering increases
the cardinality only slightly (see [5]). The extra requirement that C1 is also
k-locating-dominating for 1 ≤ k ≤ n − 2 is not demanding cardinalitywise
either. Indeed, the best 1-identifying 2-fold 1-covering codes which were found
(Theorem 4), are immediately k-locating-dominating for all 1 ≤ k ≤ n − 2 as
well.

Theorem 4 M ′′
1 (7) ≤ 38, M ′′

1 (8) ≤ 70, and M ′′
1 (10) ≤ 249.

It can also be checked that the best known 1-identifying and 2-fold 1-
covering code of length 9 and of cardinality 128 [5] is k-locating-dominating
for all 1 ≤ k ≤ 7.

Corollary 1 M4(n) ≤ 38M3(n−7), M5(n) ≤ 70M4(n−8), M6(n) ≤ 128M5(n−
9) and M7(n) ≤ 249M6(n− 10).

The codes of Theorem 4 are also useful for bounding M1(n) from above.
Namely, it has been proved in [5] that if a code C ⊆ Fn is 1-identifying and 2-
fold 1-covering then the code D = {(π(u),u,u+v) | u ∈ Fn,v ∈ C} ⊆ F2n+1 is
1-identifying and 2-fold 1-covering (π(·) is the parity check bit). Hence, we have
the following theorem where the previous records are given in the parenthesis
[2].

Theorem 5 M1(17) ≤ 17920 (18558) and M1(21) ≤ 254976 (262144).

A natural generalization of r-identifying codes are codes which identify sets
of words, see [6]. A code C ⊆ Fn is called an (r,≤ `)-identifying if for all
X, Y ⊆ Fn, |X|, |Y | ≤ `, X 6= Y, we have

⋃

x∈X

Ir(C;x) 6=
⋃

y∈Y

Ir(C;y).

The smallest cardinality of such codes in Fn is denoted by M
(≤`)
r (n).

Theorem 6 Let r be a positive integer and suppose ` ≥ r +3. Let C1 ⊆ Fn1 be
a (1,≤ `)-identifying code and C2 ⊆ Fn2 be an (r,≤ `)-identifying code. Then
C1 ⊕ C2 ⊆ Fn1+n2 is an (r + 1,≤ `)-identifying code.

Corollary 2 When r ≥ 1 and ` ≥ r + 3 we have

M
(≤`)
1+r (n + m) ≤ M

(≤`)
1 (n)M (≤`)

r (m).
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3 A direct sum of 1-identifying code and F

In [1] it has been stated as an open problem whether M1(n + 1) ≤ 2M1(n)
holds, from there it also follows that M1(n + 1) ≤ 3M1(n). The next theorem
shows that M1(n + 1) ≤ (2 + εn)M1(n) where εn → 0 as n →∞.

Theorem 7 Assume n ≥ 2. Then we have

M1(n + 1) ≤ (2 +
1

n + 1
)M1(n).

Proof. Let C ⊆ Fn be an optimal 1-identifying code attaining M1(n). Define

C1 = {x | x ∈ C , |I1(x)| = 1} and
N1 = {x | x ∈ Fn, x /∈ C, |I1(x)| = 1}.

Clearly, |C1 ∪ N1| ≤ M1(n). Assume first |C1| ≤ M1(n)/(n + 1). Let D1 =
C ⊕F ⊆ Fn+1. Denote Ol = Fn ⊕ {l} where l ∈ F. Assume x = (x′, a) ∈ Fn+1

with x′ ∈ Fn and a ∈ F. Since C is 1-identifying, the set I1(D1;x) can coincide
only with the I-sets of words in Oa+1. If |I1(C;x′)| ≥ 2, then the word x is
uniquely identified by its I-set I1(D1;x) since each word in Oa+1 1-covers a
unique word in Oa. It can now be assumed that |I1(C;x′)| = 1.

Assume x′ ∈ N1, i.e. I1(C;x′) = {x′ + e}, where e ∈ Fn is a word of
weight 1. The only word in Oa+1 which 1-covers the codeword (x′ + e, a)
is the word (x′ + e, a + 1). However, |I1(C;x′ + e)| ≥ 2 and therefore, as
above, it can be said that x is uniquely identified. If x′ ∈ C1, then clearly,
I1(D1; (x′, a)) = I1(D1; (x′, a + 1)). But such a problematic case can be solved
by adding one codeword to the code D1. Thus, we have the claim in this case.

Assume then |C1| > M1(n)/(n + 1). Let z ∈ Fn be a word of weight 1.
Consider then a code D2 ⊆ Fn+1 defined as

D2 = (C ⊕ {0}) ∪ ((C + z)⊕ {1}).

Assume x = (x′, a) ∈ Fn+1 with x′ ∈ Fn and a ∈ F. If |I1(C;x′)| ≥ 2, then, as
above, the word x is uniquely identified by its I-set I1(D2;x).

Assume now that x′ ∈ C1, i.e. I1(C;x′) = {x′}. The only word in
Oa+1 which 1-covers the codeword (x′, a) is the word (x′, a + 1). However,
|I1(D2; (x′, a + 1)) ∩ Oa+1| ≥ 2 since |I1(D2; (x′ + z, a + 1)) ∩ Oa+1| = 1 and
the underlying code C is 1-identifying. Therefore, as before, it can be deduced
that x is uniquely identified by its I-set I1(D2;x).

Assume then x′ ∈ N1, i.e. I1(C;x′) = {x′ + e}, where w(e) = 1. Again it
suffices to consider the word (x′+e, a+1). If I1(D2; (x′, a)) = I1(D2; (x′+e, a+
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1)), then I1(D2; (x′+e, a+1))∩Oa+1 = {(x′, a+1)}. Since I1(D2; (x′, a))∩Oa =
{(x′ + e, a)}, we have d((x′, a), (x′ + e + z, a + 1)) = 1. Thus, I1(D2; (x′, a)) =
I1(D2; (x′ + e, a + 1)) if and only if e = z. The code D2 can clearly be made
1-identifying by adding a codeword to the set for each one of these problematic
cases. Moreover, there exists a word e′ ∈ Fn of weight 1 such that

|{x ∈ Fn| x /∈ C, I1(x) = {x + e′}}| ≤ |N1|
n

.

If we now choose z = e′, then we have, by the previous considerations, that

M1(n + 1) ≤ 2M1(n) +
|N1|
n

≤ (2 +
1

n + 1
)M1(n).

¤
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