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Abstract. For g-ary n-sequences, we continue the development [1, 2] of similarity
functions that can be used (for ¢ = 4) to model a thermodynamic similarity of DNA
sequences. Codes based on similarity functions are called DNA codes [1]. In this
paper, we discuss a biologically motivated [2] additive similarity function called a stem
Hamming similarity and defined as the total number of common 2-blocks containing
adjacent symbols in the longest common Hamming subsequence between two g-ary
n-sequences. Conventional lower and upper bounds called the Gilbert-Varshamov,
Plotkin and Elias bounds [3] on the rate of corresponding DNA codes are obtained.

1 Notations and definitions

Symbol £ denotes definitional equalities and symbol [n] = {1,2,...,n} denotes
the set of integers from 1 to n. Let ¢ = 2,4,... be an arbitrary even integer,
A = {0,1,...,q — 1} is the standard alphabet of size |A| = ¢ and |u]| ([u])
denotes the largest (smallest) integer < u (> u).

For any letter x € A, we define z 2 (¢—1)—x € A, which is called a comple-
ment of the letter x. For any g-ary n-sequence & = (x1,x9,...,Tn—1,2n) € A",
we define its reverse complement T 2 (T, Tr1,...,02,T1) € A" Ify 2 z,
then « = g for any = € A".

Consider two arbitrary g-ary n-sequences

x=(r1,22,...,2n) € A" and y = (y1,92,...,yn) € A".

The number

n—1
Hy(z,y) = Z si(z,y), where
i—1
a |1 if @ =y, Tig1 = Yiv1, .
2 = =1,2... -1
si(@.y) {0 otherwise, t=12...,n-1, (1)

is called a stem Hamming similarity between x and y. Evidently, Hy(z, y) can
be defined as the total number of common 2-blocks containing adjacent symbols
in the longest common Hamming subsequence between sequences x,y € A".
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In addition, 0 < Hy(x,y) <n—1and Hg(xz,y) =n—1 if and only if x = y.
Therefore, the difference Dy (x,y) = (n —1) — Hy(x,y) > 0, ¢,y € A", can
be called a stem Hamming distance between & and y.

Let (1), z(2),...,z(N), where (j) £ (z1(j), ..., zn(j)) € A", j € [N], be
codewords of a g-ary code X = {x(1),z(2),...,2(N)} of length n and size N,
where N = 2,4,... is an even number. Let D, 0 < D < n — 1, be an arbitrary
number.

A code X is called a DNA (n,D)-code [1] based on the stem Hamming
similarity if the following two conditions are fulfilled: (i). For any j € [N],

there exists j° € [N], j/ # j, such that x(j') = x(j) # =(j). In other words,
X is a collection of N/2 pairs of mutually reverse complementary sequences.
(7). For any j # j, distance Dy (x(j), (j’)) > D, i.e., similarity

Hy (z(j),z(j)) <(n—1)—-D, j#j, 0<D<n-1 (2)

Let Ngi(n, D) be the maximal size of DNA (n, D)-codes. If d, 0 < d < 1, is
a fixed number, then

_ log, Nu(n,d
Ry(d) & T (28 Nerlmdn) =gy 3)

n— oo n

is called a rate of DNA codes based on the stem Hamming similarity.

2 Lower bound on Rg(d)

Let & and y be independent identically distributed random sequences having
the uniform distribution on A". Introduce binary random variables

o JO it x =y, w1 = Yiga, (4)
! 1 otherwise, i=1,2...,n—1
and their sum
n—1
Sn = Z i = (n_ 1) - Hst(may) = Dst($7y)' (5)
i=1

Denote by &, the average value of random variable ¢. From definition (4) it
follows

n—1

2 2

qg —1 — qg —1
N = 2 9 Sn:ZnZ:(n_l) q2 .
=1

Let d, 0 < d < q2q§1, be a fixed parameter. Introduce function

— —log, Pr{Hy(z,y) > (1—d
Ry(d) 2 T % PPl y) 2 A= dnf

n—o00 n
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—— —log, Pr{S, < dn}
= lim .
n—oo n

The random coding method for DNA codes [1] leads to

(6)

Proposition 1 If 0 < d < q2q§1, then the rate Rs(d) of DNA codes based on

stem Hamming similarity satisfies inequality Rg(d) > Ry (d), where R, (d) is
defined by (6).

Function R, (d) is called a random coding bound (or the Gilbert-Varshamov
bound) on the rate (3) of DNA codes identified by inequality (2).

2.1 Calculation of random coding bound

For the sum (5), introduce the generating function
n—1
Gn(u) £ Z Pr{S, = a} ¢"* = ¢*5», —00 < u < 00, (7)
a=0

and the semi-invariant generating function
pin(u) £ log, Gp(u), —00 < u < 00. (8)

Define independent identically distributed random variables

o ES if a =1,
gié{l if @ =i, Pr{@:a}z{zl o (9)

1
0 otherwise, ; ifa=0.

One can easily see that the vector sequence §l 2 (&, &41), i=1,...,n—1,is
a stationary Markov chain with transition probabilities:

Pr{ £ =(a,a9) &, | = (ag,a4)} = {(}))r{giﬂ = el i ;11;;: -

q;ql if a1:a4,a2:0,
= é if a1 =aq,a0=1, (10)
0 if aj 7& ay.
In addition, n;, i = 1,...,n — 1, defined by (4) can be written in the form:
N = f(éz) £ 1 — &&iya, ie., the given sequence is a deterministic func-

tion of Markov chain (10)!. Hence, using the standard Markov arguments [4],

Note that n;, s =1,...,n— 1, is not a Markov chain because for any i, 3 < i < n— 1, the
conditional probability

1
q(g+1)

Pr{n; =0|ni-1 =1,mi—2 =0} =0 and Pr{n =0|ni—1=1}=
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pp. 230-232, we can calculate the generating functions (7)-(8) and obtain the
following asymptotic (n — oo) formula:

() = logg Gu(w) = np(w) + OL),  pulu) 2 log, Au)

Au) = ;q [1 +(q—1)g¢" + \/[1 +(g—1)g"? —4(g - Dg*(1 —g4)| . (11)

Finally, applying the Large Deviations Principle [5] to .S, we get

Theorem 1 Random coding bound R . (d) defined by (6) has the form

2
-1
R,(d) = L,(d) 2 max{ud—p(u)}, 0<d<?

12
u<0 q2 ’ ( )

where L, (d) ,0<d <4 is a decreasing | J-convex function and

-1

¢ —1
q* '

q2

L,0)=1, L, ( > =0, L,(d)>0, 0<d< (13)

3 Upper bounds on Ngu(n, D) and Ry(d)

3.1 The Plotkin upper bound on R(d)
A standard upper bound on the rate Ry (d) is given by

Proposition 2 . If qugl < d<1, then Ry(d) =0 and

2 2

. q° —
1al if 0<d< 7

Ra(d) < 1— =

. (14)

3.2 On sphere size for stem Hamming similarity

For ¢ > 2, introduce three recurrent Fibonacci-type sequences [6] of numbers
Fj(t), F2(t), F2(t), t = 1,2,..., where

Fi(t) £ (= DF(t—=1)+ (¢—1)Fi(t—2), i=1,23, t>3, (15)

and Fj(1) £q, Fj(2) 2 ¢ —1; F;(1) 2 q—1, F;(2) £ (¢ - 1)* F;(1) 2 ¢ 1,
F3(2) £ q(g — 1). One can prove, that F,(t) (F2(t)/F2(t)) is the number of
g-ary sequences x € A" which do not contain 2-stems of the form (0,0) (and
do not start and end/do not start or do not end with 0, correspondingly).
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Let t*) £ (t1,t9,...,t), k = 1,2,..., denote an ordered collection of k
integers. For fixed mtegers s5,1<s<n-— 1 and k, 1 < k < min {s [” 5] },
define set

s, k)2 {604 120, 10 20, 621 i=23 .k,

k+1
Zti:n—(s+k)}. (16)
i=1

Proposition 3 For any s, 0 < s < n — 1, the sphere size Sq(n,s) = [{y :
Hg(x,y) = s}| does not depend on its center ¢ € A™. If s =0, then

Sat(n,0) 2 |{y : Hy(z,y) = 0} = F}(n). (17)
If 1<s<n-—1, then
min{s; [ 23]} o1 k
Sa(n,s)= > (k_ 1) > {Fg’m)H Fi(u)FS(tkH)}. (18)

k=1 T(s,k) =2

For the case ¢ > 2, Proposition 3 means that the random coding bound
2
Ry(d) = Lyu(d), 0 < d < T+, (defined by (6) and calculated in Theorem 1)

can be also written as

g, S(n,(1—d 2 _
R (d) = L(d) = 1— Tn 2SS zdn) oy )

n— oo n

(19)

3.3 The Elias upper bound on R(d)
The standard Elias arguments [3] and asymptotic formula (19) yield

Theorem 2 For any d, 0 < d < %, the rate Ry (d) < U,(d), and upper
bound U, (d) is presented by parametric equations

2

U = wl) - p), A= [p-w@E]L wso @)

where function pu(u), u <0, is defined in Theorem 1.

Upper bound U,(d) can be called the Elias bound [3]. The given bound
improves the Plotkin bound (14) for small values of d, 0 < d < d,. We calculated
de =~ 0.60 and ds =~ 0.13.
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Figure 1: Upper and lower bounds for the rate of DNA-codes for ¢ = 2:
H(d) — Hamming bound, P(d) — Plotkin bound,
E(d) — Elias bound, VG(d) — Varshamov-Gilbert bound.
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