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Abstract. Recently Gopalan, Klivans, and Zuckerman proved that any binary
Reed-Muller (RM) code RM(s, m) can be list-decoded up to its minimum distance
d with a polynomial complexity of order n3 in blocklength n. The GKZ algorithm
employs a new upper bound that is substantially tighter for RM codes of fixed order
s than the universal Johnson bound, and yields a constant number of codewords
in a sphere of radius less than d. In this note, we modify the GKZ algorithm and
show that full list decoding up to the code distance d can be performed with a lower
complexity order of at most n lns−1 n. We also show that our former algorithm yields
the same complexity order n lns−1 n if combined with the new GKZ bound on the
list size.

1 Introduction

Binary Reed-Muller (RM) codes RM(s,m) of order s have length n = n(m),
dimension k = k(s,m), and distance d = d(s,m) as follows

n = 2m, k =
s∑

i=0

(m
i ) , d = 2m−s.

The renowned majority decoding algorithm of [1] provides bounded-distance
decoding (BDD) for any code RM(s,m) and corrects all errors of weight
less than d/2 with complexity order of kn. Even a lower complexity order
of nmin(s,m− s) is required for various recursive techniques of [2], [3], and [4].
Both recursive and majority algorithms correct many error patterns beyond
the BDD radius d/2; however, they fall short of complete error-free decoding
within any given decoding radius T ≥ d/2. Therefore, below we address list
decoding [5] algorithms that output the list

LT (y) = {c ∈ RM(s,m) : d(y, c) ≤ T}
of all vectors c of a code RM(s,m) located within the distance T from any
received vector y.
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Our study will be based on the recent algorithm obtained in [6] by Gopalan,
Klivans, and Zuckerman (GKZ). The GKZ algorithm list-decodes any binary
Reed-Muller (RM) code RM(s,m) up to its minimum distance d with a poly-
nomial complexity of order n3 in blocklength n. Another important advance
is a new upper bound on the list size that is substantially tighter than the
universal Johnson bound for codes RM(s,m), and yields a constant number of
RM-codewords in any sphere of radius less than d. More precisely, let

δs =
d(s,m)
n(m)

= 2−s, T (s,m, ε) = n(δs − ε)

be the relative distance of RM(s,m) and the decoding radius of interest. Here
we take any ε ∈ (0, δs). Also, let χ(s,m, ε) be the maximum number of binary
operations required by GKZ algorithm to design the list LT (y) and let

l(s,m, ε) = max
y
|LT (y)| (1)

be the largest possible number of codewords in a sphere of radius T (s,m, ε).
We will use the new upper bound

l(s,m, ε) ≤ 2(2s+5ε−2)4s (2)

discovered in [6]. This bound also leads to a new list decoding algorithm [6]
that outputs the list LT (y) with complexity

χ(s,m, ε) = O(n3ls(s, m, ε)) = O(ε−8s2
n3)

In the following, we simplify the GKZ algorithm and prove

Theorem 1 For any received vector y, RM codes RM(s,m) can be list-decoded
within the decoding radius (2−s − ε)n with complexity

χ(1)(s,m, ε) = O(ε−18n lns−1 n) + O(ε8−16sn lnn) (3)

Also, consider our former recursive algorithm [7] that has the same complexity
order n lns−1 n in blocklength n but was used in [7] to decode within the Johnson
bound. In fact, this algorithm is restricted only by the correspomding list size.
Namely, it is shown in [7] that complexity χ(2)(s,m, ε) of the algorithm Ψs,m,ε

satisfies recursion

χ(2)(s, m, ε) ≤ m(χ(2)(s− 1,m− 1, ε) + cnε−1l(s,m, ε/2)l(s− 1, m− 1, ε)) (4)

Thus, we can now extend the decoding radius to code distance d using the GKZ
bound (2). As initial step of our recursion (4), we can also use the list decoding
algorithm [8] of RM(1,m) codes, which has linear complexity O(n ln2(ε−1))
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within radius T (1,m, ε). This combination of estimates (2) and (4) shows that
the former algorithm Ψs,m,ε decodes within the radius (2−s−ε)n with complexity

χ(2)(s,m, ε) = O(χ(1)ε−1)

In the next section, we briefly outline a modification of the GKZ algorithm that
gives Theorem 1.

2 Error-free list decoding of RM codes

We shall use the well known Plotkin construction of RM-codes [9] which repre-
sents any codeword f ∈ RM(s,m) as the vector u,u + v, where u ∈ RM(s,m−
1) and v ∈ RM(s− 1,m− 1). Let a received vector y be decomposed into two
halves y′ and y′′, which can be considered as the corrupted versions of some
vectors u and u + v correspondingly.

Algorithm. Given ε and any received vector y, we consider below an algo-
rithm Φ(s,m, ε) that decodes y into the list LT (y) within the radius T (s,m, ε) =
n(δs − ε).

Step 1. Decode the vector yv = y′ + y′′ within the radius T (s,m, ε) =
T (s− 1,m− 1, 2ε), using the algorithm Φ(s− 1,m− 1, 2ε). The resulting list of
codewords Lv belongs to RM(s− 1, m− 1).

Step 2. Decode both vectors y′ and y′′ within the radius T (s,m, ε)/2 =
T (s,m−1, ε) using the algorithm Φ(s,m−1, ε). The resulting lists of codewords
L′and L′′ belong to RM(s,m− 1).

3. Consider the two lists of vectors

A = {(u′,u′ + v
)

: u′ ∈ L′,v ∈ Lv}
B = {(u′′ + v,u′′

)
: u′′ ∈ L′′,v ∈ Lv}

Calculate the distance from y to each vector of the two lists. Leave the
vectors located within distance T (s,m, ε).

The above algorithm gives complete list LT (s,m,ε)(y) and thus performs the
required decoding. This is due to the following:

1. Vector yv has no more errors than y;
2. Either y′ or y′′ has at most T (s,m, ε)/2 errors.

Complexity. Algorithm Φ(s,m, ε) includes one decoding Φ(s−1,m−1, 2ε),
two decodings Φ(s,m−1, ε) plus requires the order of 2nl(s,m−1, ε)l(s−1,m−
1, 2ε) operations to verify the distance from vector of lists A and B to the vector
y. Thus, algorithm Φ(s,m, ε) has complexity

χ(s, m, ε) ≤ χ(s− 1,m− 1, 2ε) + 2χ(s,m− 1, ε) (5)
+2nl(s,m− 1, ε)l(s− 1,m− 1, 2ε).



Dumer, Kabatiansky, Tavernier 85

Now we proceed, for s = 2, 3, .. using complexity χ(1,m, ε) = 2m ln2 ε−1 in
step s = 1, the Johnson bound l(1,m, ε) ≤ (2ε)−2 for RM − 1 codes and the
upper bound (2) for s > 1. Then

χ(2,m, ε) = O(m2m
[
ln2 ε−1 + ε−18

]
) = O(m2mε−18)

and for any s > 2 we obtain the estimate

χ(s,m, ε) = O(ms−12mε−18) +
s∑

i=3

O
(
ms−i+12mε8−16i

)

= O(ε−18n lns−1 n) + O(ε8−16sn lnn)

which proves Theorem 1.
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