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1 Introduction

A linear code is said to be proper in error detection over a symmetric mem-
oryless channel if its undetected error probability is an increasing function of
the channel symbol error probability. A proper code performs well in error
detection in the sense that the better the channel, the better the performance,
which makes the code appropriate for use in channels where the symbol error
probability is not known exactly.

A q-ary linear code may be optimal in different ways. Of most interest are
codes whose parameters are in some sense extremal. For example, Maximum
Distance Separable (MDS) codes are distance-optimal among the q-ary linear
codes of the same length and dimension. Codes may be also length-optimal and
size-optimal.

Studies have shown that many linear codes which are optimal in some sense,
or close to optimal, are also proper, and most often their dual codes are proper,
too. For example, proper are the Perfect codes over finite fields, MDS codes
and some Near MDS codes, many Griesmer codes, and Maximum Minimum
Distance codes and their duals. Could it be the case that properness and
optimality are closely related? What kind of relation would this be?

It is most natural to start the study of these questions by looking for optimal
codes which are not proper. In this work we present some preliminary results
in this direction. We have studied some binary linear codes of optimal length
which cannot be obtained by shortening or puncturing other binary linear codes.
The codes turn out to be proper, together with their dual codes. Moreover, like
most of the codes listed above, these binary codes satisfy certain conditions
that imply properness. These conditions are expressed in terms of the so called
extended binomial moments, which are just linear combinations of the elements
of the weight distribution of the codes. One interesting observation based on

∗ Partially supported by Research Platform MP2 of the University of Gothenburg.

1



computer graphs is that the extended binomial moments of these binary proper
codes are rather close to a certain general lower bound.

2 Preliminaries

Error detection with linear codes. Let C be a linear [n, k, d]q code over
the finite field GF (q) of q elements, i.e., a k-dimensional subspace of the n-
dimensional vector space GF (q)n over GF (q), with minimum Hamming weight
d. Suppose C is used to detect transmission errors on a q-ary discrete memory-
less channel. In such a channel, any symbol transmitted has a probability 1− ε
of being received correctly and a probability ε

q−1 of being transformed into each
of the q − 1 other symbols. Naturally, it should be more likely for a symbol to
remain unchanged during the transmission than to change into another symbol,
which leads to the restriction 0 ≤ ε ≤ q−1

q .
Let x ∈ C be the code word transmitted and y ∈ GF (q)n be the vector

received. In error detection, when y is not a codeword the decoder makes the
correct decision that a transmission error has occurred, and asks for a retrans-
mission. When y is a codeword, the decoder decides that y was sent. Such a
decision is of course incorrect when y and x are different, thus a transmission er-
ror for which the error vector y−x is a non-zero codeword remains undetected.
The probability Pue(C, ε) that an undetected error occurs depends on ε, the ba-
sic parameters n, k, d, and q of C, and its weight distribution {Ai, 0 ≤ i ≤ n},
where Ai is the number of code words in C with weight i. The formula is given
by [7]

Pue(C, ε) =
n∑

i=1

Ai

( ε

q − 1

)i
(1− ε)n−i, 0 ≤ ε ≤ q − 1

q
. (2.1)

Proper error detecting codes. In error detection over a particular chan-
nel, codes with the smallest probability of undetected error would be the best.
However, in order to find such a code, one has to use exhaustive search since
presently we don’t have any efficient general method for such a search. But
even if we would have such a method, this would not solve the problem, since
most often ε is not known exactly, and a best code for some ε′ may be very
inappropriate for the channel, even if its symbol error probability is close to ε′.
For this reason the concept of a proper code has been introduced [8, 6, 7].

A linear code is proper, if its undetected error probability is an increasing
function of ε. Thus the error detecting performance of a proper code is better
on better channels, i.e., channels with smaller symbol error probability, which
makes the code appropriate for channels where ε is not known exactly.

Another view to properness is gained by comparing the function Pue(C, ε)
of a proper [n, k, d]q code C to the function Pue(ε) obtained by averaging the
undetected error probability in some set of [n, k]q codes. In the set of systematic
[n, k]q codes, the averaging procedure gives [10, 11]

Pue(ε) = q−(n−k)[1− (1− ε)k],
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which is an increasing function of ε. Also in the set of binary [n, k] codes the
average undetected error probability is an increasing function [8]:

Pue(ε) =
2k − 1
2n − 1

[1− (1− ε)n].

Hence a hypothetical “average” code in the class would be proper. In this
sense a proper code is similar to an “average” code, which makes the code a
reasonable choice in situations where we cannot do better.

Codes, which are optimal or close to optimal in some sense, are prevailing
in the list of proper codes [4]. The question we want to address is if properness
and optimality are closely related. As a first step, we have studied some length-
optimal binary codes from [1].

Discrete sufficient conditions for properness. Let C be an [n, k, d]q
linear code with weight distribution {A0, A1, . . . , An}. The extended binomial
moments A∗` of C are defined as [2]

A∗` =
∑̀

i=d

`(`− 1) . . . (`− i + 1)
n(n− 1) . . . (n− i + 1)

Ai, d ≤ ` ≤ n,

A∗0 = 0, 0 ≤ ` ≤ d− 1.

(2.2)

Let B∗
` be the extended binomial moments of the dual code. It holds [2]

B∗
` + 1 = q`−k(A∗n−` + 1), ` = 0, . . . , n. (2.3)

Denote by d⊥ the minimum Hamming distance of the dual code. The following
results have been derived in [3, 5, 2].

Theorem 1 If

A∗` ≥ qA∗`−1, ` = d + 1, . . . n− d⊥ + 1, (2.4)

then C is proper.

Theorem 2 Suppose C is a binary code. If

d ≥
⌈n

2

⌉

or ⌈n

3

⌉
+ 1 ≤ d⊥ ≤

⌊n

2

⌋
and n(n + 1− 2d⊥) ≤ d(n− d⊥),

then C is proper.

Theorem 3 The extended binomial moments satisfy

max{0, q`−n+k − 1} < A∗` < qmin(`+1−d, k+1−d⊥) − 1, ` = d, . . . , n− d⊥

A∗` = q`−n+k − 1, ` = n− d⊥ + 1, . . . , n.
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Linear binary codes of dimension at most 7. Following [1], we say
that an [n, k, d] code is distance-optimal if no [n, k, d−1] code exists; it is length-
optimal (which is a stronger condition) if no [n−1, k, d] code exists, and optimal,
if no [n + 1, k + 1, d] or [n + 1, k, d + 1] code exists. An optimal code cannot be
obtained by shortening or puncturing other binary linear codes.

Summary of optimal binary codes with k ≤ 7, n ≤ 2k [1].

[n, k, d] # codes [n, k, d] # codes [n, k, d] # codes
(form.equiv.) (form.equiv.) (form.equiv.)

[8, 4, 4] 1 [12, 4, 6] 1 [16, 5, 8] 1

[21, 5, 10]∗ 2 [24, 5, 12] 1 [28, 5, 14] 1

[32, 6, 16] 1 [38, 6, 18] 1 [45, 6, 22] 1

[48, 6, 24] 1 [53, 6, 26] 2 [56, 6, 28] 1

[60, 6, 30] 1 [24, 7, 10]∗ 6(5) [27, 7, 12] 1

[40, 7, 18] 172(46) [43, 7, 20] 7(3) [56, 7, 26]∗ > 19000

[59, 7, 28] 143(38) [64, 7, 32] 1 [71, 7, 34] 1

[75, 7, 36]∗ 3603 [79, 7, 38] 216(22) [82, 7, 40] 11(7)

[87, 7, 42] 55(36) [90, 7, 44] 6(6) [93, 7, 46] 1

[96, 7, 48] 1 [102, 7, 50]∗ 3 [105, 7, 52] 1

[109, 7, 54] 1 [112, 7, 56] 1 [117, 7, 58] 2

[120, 7, 60] 1 [124, 7, 62] 1

Recall that two codes are formally equivalent if they have the same basic
parameters and weight distribution. Clearly, the undetected error probability
function (2.1) of such codes is the same. In the above table, the even columns
show the number of non-isomorphic codes with the given basic parameters and,
in parentheses, the number of classes of formal equivalence.

3 The result

Theorem 4 All codes in the above table and their duals are proper, except
those marked by an asterisk.

The proof is based on theorems 1 and 2 above. We have used Matlab for
computing the extended binomial moments of the codes and their duals, given
in (2.2) and (2.3), and for checking the conditions of the theorems. Information
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about weight enumerators and dual code distances has been taken from [1] and
also from the Internet based data bases http://www.codetables.de/ and
http://www.math.unl.edu/∼djaffe2/codes/webcodes/binary/codes.cgi?n=28&k=5.

The codes [8, 4, 4], [12, 4, 6], [16, 5, 81], [24, 5, 12], [28, 5, 14], [60, 6, 30], and [56, 6, 28]
have minimum distance n/2 and are proper by the first part of Theorem 2. The
dual codes have minimum distance at least 3, and are proper by the second part
of the theorem. In fact the codes achieve the Grisemer bound. It has been no-
ticed earlier [5] that Theorem 2 is quite efficient for the study of such codes.

We end by noting the following. The extended binomial moments have
shown to be a useful tool in the study of the undetected error probability func-
tion. We plotted the extended binomial moments of the above codes together
with their bounds from Theorem 3. It turns out that the extended binomial
moments of these optimal proper codes almost lie on the lower bound.
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