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Abstract. For a prime power q and for integers R, η with R > 0, 0 ≤ η ≤ R − 1,
let A(η)

R,q = (Cni)i denote an infinite sequence of q-ary linear [ni, ni − ri]qR codes
Cni with covering radius R and such that the following two properties hold: (a) the
codimension ri = Rti + η, where (ti)i is an increasing sequence of integers; (b) the

length ni of Ci coincides with f
(η)
q (ri), where f

(η)
q is an increasing function. In this

paper, sequences A(η)
R,q with asymptotic covering density bounded from above by a

constant independent of q are constructed for an arbitrary R, and for each value
of η ∈ {0, 1, . . . , R − 1}, under the condition that q = (q′)R. The key tool is the
description of new small saturating sets in projective spaces over finite fields, which
are the starting point for the qm-concatenating constructions of covering codes. A
new concept of N -fold strong blocking set is introduced. Several upper bounds on
the length function of covering codes and on the smallest sizes of saturating sets are
improved.

1 Introduction

Denote by Fq the Galois field with q elements. Let Fn
q be the n-dimensional

vector space over Fq. Denote by [n, n− r]q a q-ary linear code of length n and
codimension r. The covering radius of an [n, n − r]q code is the least integer
R such that Fn

q is covered by spheres of radius R centered on codewords. An
[n, n−r]qR code is an [n, n−r]q code with covering radius R. For an introduction
to coverings of vector spaces over finite fields, see [1] .

The covering quality of an [n, n − r(C)]qR code C can be measured by its
covering density

µq(n,R, C) = q−r(C)
R∑

i=0

(q − 1)i

(
n

i

)
≥ 1. (1)

From the point of view of the covering problem, the best codes are those with
small covering density.
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For given integers R, η with R > 0, 0 ≤ η ≤ R − 1, and for a fixed
prime power q, let A(η)

R,q = (Cni)i denote an infinite sequence of q-ary linear
[ni, ni− ri]qR codes Cni with covering radius R and such that the following two
properties hold:

(a) the codimension ri = Rti + η, where (ti)i is an increasing sequence of
integers;

(b) the length ni of Ci coincides with f
(η)
q (ri), where f

(η)
q is an increasing

function.
We call A(η)

R,q an infinite family of covering codes or an infinite code family, or
simply infinite family.

Considering families of type A(η)
R,q is a standard method of investigation of

linear covering codes, see [1]-[5], and the references therein. In particular, it
is related to the fact that families with distinct values of η often have dis-
tinct properties. Throughout the paper, distinct families A(η)

R,q with the same

parameters η, R, q will be denoted as follows: A(η)
R,q,1, A(η)

R,q,2, and so on.

For an infinite code family A(η)
R,q, its asymptotic covering density is defined

as follows:
µq(R,A(η)

R,q) = lim inf
i→∞

µq(ni, R, Cni). (2)

The size q of the base field Fq is fixed for a given family, but, when an infinite
set of families is considered, the value of q can infinitely grow. A central problem
for covering codes is the following: for fixed R and η find a set of sequences
A(η)

R,q of q-ary codes with q running over an infinite set of prime power, such
that the asymptotic covering density of every sequence is bounded from above
by a constant independent of q. Each sequence of such a set is said to be good.
Accordingly, an [n, n−r]qR covering code is called good or short if n = O(q

r−R
R ).

By ( 1) and (2), a sequence A(η)
R,q consisting of good codes is good. So far, the

problem has been solved only for η = 0 and arbitrary R and q, for R = 2, η = 1
and q a square [3, formula (33)], and for R = 3, η = 1 and q a cube [4, p. 540].

The main result of the paper is the construction of good infinite families
A(η)

R,q for arbitrary R and all η = 0, 1, 2, . . . , R−1, under the condition q = (q′)R.
A key tool in our investigation is the connection between linear covering codes
and saturating sets in projective spaces over finite fields.

Let PG(v, q) be the v-dimensional projective space over Fq. We say that a
set of points S ⊆ PG(v, q) is %-saturating if for any point x ∈ PG(v, q) there
exist % + 1 points in S generating a subspace of PG(v, q) containing x, and %
is the smallest value with such property [2, Definition 1.1], [6]. In the literature
saturating sets are also called saturated sets [2],[3], spanning sets, and dense
sets.

Points of an (R−1)-saturating set K of size n in PG(r−1, q) can be viewed
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as columns of a parity check matrix of an [n, n− r]qR related covering code CK

[2]-[6]. A saturating set K will be said to be small if the related covering code
CK if short.

A basic tool to obtain an infinite family of codes with good covering prop-
erties from a covering code are the so-called qm-concatenating constructions [1,
Section 5.4]-[5].

The good infinite families of covering codes provided in this paper are ob-
tained by applying the qm-concatenating constructions to covering codes related
to new small saturating sets. The construction of such sets relies on a new no-
tion of N -fold strong blocking set.

The length function `q(r,R) is the smallest length of a q -ary linear code
with codimension r and covering radius R [1]. Existence of an [n, n− r]qR code
or, equivalently, of an (R − 1) -saturating n-set in PG(r − 1, q), implies the
upper bounds `q(r,R) ≤ n. Denote by kq(v, %) the smallest possible size of a
%-saturating set in the space PG(v, q). Clearly, `q(r,R) = kq(r − 1, R− 1).

The small saturating sets and the infinite code families obtained in this
paper provide an improvement on the previously known upper bounds on the
length function `q(r,R), and on the corresponding value of kq(v, %).

2 Infinite families A(0)
R,q of [n, n−Rt]qR codes

The best known families A(0)
2,q and A(0)

3,q are given in [5]. By using them in the

direct sum construction [1], we obtain an infinite family A(0)
R,q of [n, n − r]qR

codes with parameters

A(0)
R,q : R ≥ 4, r = Rt ≥ 5R, q ≥ 7, q 6= 9, n = Rq

r−R
R +

⌈
R

3

⌉
q

r−2R
R , r 6= 6R.

The main term of the asymptotic density µq(R,A(0)
R,q) is RR

R! and it does not
depend of q.

The codes of the family A(0)
R,q are shorter than those of the family arising

from the direct sum of the [ q
m−1
q−1 , qm−1

q−1 − m]q1 perfect Hamming codes, see,
e.g., [2, formula (5)].

3 Small ρ-saturating sets in the spaces PG(ρ + 1, q)

We introduce a new concept of N -fold strong blocking set.

Definition 3.1 A subset B of a projective space PG(N, q) is an N -fold strong
blocking set if every hyperplane of PG(N, q) is spanned by N points in B.
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Theorem 3.2 Let q = (q′)ρ+1. Any (ρ + 1)-fold strong blocking set in a sub-
space
PG(ρ + 1, q′) ⊂ PG(ρ + 1, q) is a ρ-saturating set in the space PG(ρ + 1, q).

Theorem 3.3 Let q = (q′)4. In PG(2, q) there is a 1 -saturating set of size
2
√

q + 2 4
√

q + 2.

Theorem 3.4 Let q = (q′)6, q′ prime, q′ ≤ 73. In PG(2, q) there is a 1-
saturating set of size 2

√
q + 2 3

√
q + 2 6

√
q + 2.

Let x0, x1, x2, x3 be homogenous coordinates for the points in PG(3, q) and
let l1, l2, l3 be lines in PG(3, q) with equations l1 : x0 = x2 = 0; l2 : x1 = x3 = 0;
l3 : x0 = x3, x1 = x2. The lines are contained in the hyperbolic quadric Q :
x0x1 = x2x3. Let g be any line disjoint from Q. We denote B = l1 ∪ l2 ∪ l3 ∪ g .
The following can be proved.

Theorem 3.5 The set B of size 4q + 4 is a 3-fold strong blocking set in
PG(3, q).

The following result shows that N -fold strong blocking sets can be obtained
by an inductive construction . Each inductive steps consists of embedding the
blocking set in a higher dimensional space, and then adding the union of some
properly chosen lines.

Theorem 3.6 Assume that there exists an N -fold strong blocking set in PG(N, q)
of size k. Then there exists an (N +1)-fold strong blocking set in PG(N +1, q)
of size
k + 1 + (N + 1)(q − 1).

Corollary 3.7 In PG(N, q), N ≥ 3, there exists an N -fold strong blocking set
of size

(q − 1)
(

N(N + 1)
2

− 2
)

+ N + 5.

Corollary 3.8 Let q = (q′)ρ+1, ρ > 1. Then there exists a ρ-saturating set in
PG(ρ + 1, q) of size

( ρ+1
√

q − 1)
(

(ρ + 1)(ρ + 2)
2

− 2
)

+ ρ + 6.

4 Infinite families A(1)
R,q of [n, n− (Rt + 1)]qR codes

We use ρ-saturating sets in the spaces PG(ρ + 1, q), obtained in the previous
section, as starting points for the qm-concatenating constructions of [2]-[5]. To
this end, it is useful that the set B described in Section 3 and the ρ-saturating
set of Corollary 3.8 consist of lines.
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Theorem 4.1 There exist infinite families A(1)
R,q of [n, n− r]qR codes with the

following parameters:

A(1)
2,q,1 : R = 2, r = 2t + 1 ≥ 3, q = (q′)4, n = 2(

√
q + 4

√
q + 1)q

r−3
2 +

⌊
q

r−5
2

⌋
,

µq(2,A(1)
2,q,1) ≈ 2 +

4
4
√

q
+

6√
q

+
4

4
√

q3
− 4

q
.

A(1)
2,q,2 : R = 2, r = 2t + 1 ≥ 3, q = (q′)6, q′ prime, q′ ≤ 73, r 6= 9, 13,

n = 2(
√

q + 3
√

q + 6
√

q + 1)q
r−3
2 + 2bq r−5

2 c.

A(1)
3,q : R = 3, r = 3t + 1 ≥ 7, q = (q′)3 ≥ 64, n = 4( 3

√
q + 1)q

r−4
3 ,

µq(3,A(1)
3,q) ≈

32
3
− 96

3
√

q
+

96
3
√

q2
− 64

3q
.

A(1)
R,q : R ≥ 4, r = Rt + 1, q = (q′)R, n = nR,qq

r−(R+1)
R + (R− 3)

q
r−(R+1)

R − 1
q − 1

,

nR,q = ( R
√

q − 1)
(

R(R + 1)
2

− 2
)

+ R + 5, t = 1 and t ≥ t0, qt0−1 ≥ nR,q.

The main term of the asymptotic density µq(R,A(1)
R,q) is (R2+R)R

2RR!
. Signifi-

cantly, it does not depend on q.

5 Infinite families A(η)
R,q of [n, n − (Rt + η)]qR codes,

η = 2, 3, . . . , R− 1

We construct small ρ-saturating sets in PG(N, (q′)ρ+1), N = ρ+2, ρ+3, . . . , 2ρ−
1.

Lemma 5.1 Fix 1 ≤ k < N . Let Bk be the subset of PG(N, q) consisting of
points whose weight is at most N − k + 1, i.e. Bk is the union of the (N −
k)-dimensional subspaces of equation xi1 = . . . = xik = 0. Then every k-
dimensional subspace of PG(N, q) is generated by k + 1 independent points in
Bk.

Theorem 5.2 Let ρ be any positive integer. Let q = (q′)ρ+1. Let N > ρ + 1.
Then in PG(N, q) there exists a ρ -saturating set of size

Vq′(N + 1, N − ρ + 1)− 1
q′ − 1

∼
(

N + 1
ρ

)
q

N−ρ
ρ+1 , where Vq′(a, b) =

b∑

i=0

(q′−1)i

(
a

i

)
.
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For a parameter η ∈ {2, 3, . . . , ρ} we take N = ρ+η. Then the length of the
[nR,q,η, nR,q,η − (R + η)]qR code related to the ρ-saturating set of Theorem 5.2
is equal to

nR,q,η =

(
η+1∑
i=0

( R
√

q − 1)i
(
R+η

i

))− 1

R
√

q − 1
∼

(
R + η

R− 1

)
q

η
R .

The code is an (R, `)-object with ` ≥ 3, see [2, Section II] for definitions of
(R, `)-objects and (R, `)-partitions. We use it as the starting code of the qm-
concatenating constructions of [2, Th. 3.1, Condition A2] with the trivial (R, `)
-partition.

Theorem 5.3 Let q = (q′)R and let R ≥ 4. We fix the parameter η ∈ {2, 3, . . . ,

R − 1}. Then there is an infinite family A(η)
R,q of [n, n − r]qR codes with the

following parameters

A(η)
R,q : R ≥ 4, r = Rt + η, q = (q′)R, n = nR,q,ηq

r−(R+η)
R + (R− 3)

q
r−(R+η)

R − 1
q − 1

,

t = 1 and t ≥ t0, qt0−1 ≥ nR,q,η.

The main term of the asymptotic covering density µq(R,A(η)
R,q) is (R+η)R2−R

((R−1)!)RR!
,

which does not depend of q.
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[6] A. A. Davydov, P. R. J. Österg̊ard, On saturating sets in small projective
geometries, Europ. J. Combin. 21, 2000 563-570.


