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Abstract. For a prime power ¢ and for integers R, with R > 0,0 <n < R-—1,
let A(") = (Cn,): denote an infinite sequence of g-ary linear [n;,n; — 7;]qR codes
Cn; Wlth covering radius R and such that the following two properties hold: (a) the
codimension r; = Rt; + n, where (£;); is an increasing sequence of integers; (b) the
length n; of C; coincides with fi™ (r;), where i is an increasing function. In this
paper, sequences AS{L with asymptotic covering density bounded from above by a
constant independent of g are constructed for an arbitrary R, and for each value
of n € {0,1,...,R — 1}, under the condition that ¢ = (¢')®. The key tool is the
description of new small saturating sets in projective spaces over finite fields, which
are the starting point for the ¢™-concatenating constructions of covering codes. A
new concept of N-fold strong blocking set is introduced. Several upper bounds on
the length function of covering codes and on the smallest sizes of saturating sets are
improved.

1 Introduction

Denote by Fj the Galois field with ¢ elements. Let F7' be the n-dimensional
vector space over F,. Denote by [n,n —r|, a g-ary linear code of length n and
codimension r. The covering radius of an [n,n — r], code is the least integer
R such that Fj' is covered by spheres of radius R centered on codewords. An
[n,n—7]qR code is an [n, n—r], code with covering radius R. For an introduction
to coverings of vector spaces over finite fields, see [1] .

The covering quality of an [n,n — r(C)]4R code C can be measured by its
covering density

M:a

s B.0) =77 D z()>1 (1)

From the point of view of the covering problem, the best codes are those with
small covering density.
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For given integers R,n with R > 0, 0 < n < R — 1, and for a fixed
prime power ¢, let Ag)q = (Cp,)i denote an infinite sequence of g-ary linear
[ni,n; —riJgR codes Cy, with covering radius R and such that the following two
properties hold:

(a) the codimension r; = Rt; + n, where (¢;); is an increasing sequence of
integers;

(b) the length n; of C; coincides with fén)(ri), where fén) is an increasing
function.

We call Ajg , Al infinite family of covering codes or an infinite code family, or
simply infinite family.

Considering families of type Ag)q is a standard method of investigation of
linear covering codes, see [1]-[5], and the references therein. In particular, it
is related to the fact that families with distinct values of n often have dis-

tinct properties. Throughout the paper, distinct famlhes .Ag%) with the same

parameters 7, R, ¢ will be denoted as follows: Al Rl Ag)q 5, and so on.

For an infinite code family Ag)q, its asymptotic covering density is defined
as follows:
1, (R, AY)) = lim inf 1, (ny, R, Co,). (2)

The size q of the base field Fj, is fixed for a given family, but, when an infinite
set of families is considered, the value of ¢ can infinitely grow. A central problem
for covering codes is the following: for fixed R and 1 find a set of sequences

Ag)q of q-ary codes with q running over an infinite set of prime power, such
that the asymptotic covering density of every sequence is bounded from above
by a constant independent of q. Each sequence of such a set is said to be good.

Accordingly, an [n, n—r]yR covering code is called good or short if n = O(q%).

By (1) and (2), a sequence Ag’)q consisting of good codes is good. So far, the
problem has been solved only for n = 0 and arbitrary R and ¢, for R=2,n=1
and ¢ a square [3, formula (33)], and for R =3, n =1 and ¢ a cube [4, p. 540].

The main result of the paper is the construction of good infinite families

A( ) for arbitrary R and allnp = 0,1,2,..., R—1, under the condition ¢ = (¢')%.
A key tool in our investigation is the connectlon between linear covering codes
and saturating sets in projective spaces over finite fields.

Let PG(v, q) be the v-dimensional projective space over F,. We say that a
set of points S C PG(v,q) is p-saturating if for any point z € PG(v,q) there
exist o + 1 points in S generating a subspace of PG(v,q) containing z, and o
is the smallest value with such property [2, Definition 1.1], [6]. In the literature
saturating sets are also called saturated sets [2],[3], spanning sets, and dense
sets.

Points of an (R —1)-saturating set K of size n in PG(r —1, ¢) can be viewed



79 ACCT2008

as columns of a parity check matriz of an [n,n—r]yR related covering code Cx
[2]-[6]. A saturating set K will be said to be small if the related covering code
Ck if short.

A basic tool to obtain an infinite family of codes with good covering prop-
erties from a covering code are the so-called ¢"™-concatenating constructions [1,
Section 5.4]-[5].

The good infinite families of covering codes provided in this paper are ob-
tained by applying the ¢"*-concatenating constructions to covering codes related
to new small saturating sets. The construction of such sets relies on a new no-
tion of N-fold strong blocking set.

The length function £4(r, R) is the smallest length of a ¢ -ary linear code
with codimension 7 and covering radius R [1]. Existence of an [n,n—r]R code
or, equivalently, of an (R — 1) -saturating n-set in PG(r — 1,¢), implies the
upper bounds /4(r, R) < n. Denote by k,(v, o) the smallest possible size of a
o-saturating set in the space PG(v,q). Clearly, {4(r, R) = kq(r —1,R —1).

The small saturating sets and the infinite code families obtained in this
paper provide an improvement on the previously known upper bounds on the
length function ¢,4(r, R), and on the corresponding value of kq(v, 0).

2 Infinite families Ag,)q of [n,n — Rt],R codes

The best known families Aé?; and Agg are given in [5]. By using them in the
direct sum construction [1], we obtain an infinite family Agg)q of [n,n —r]yR
codes with parameters

r—2R

—r [R
.Agg)qRZ4,T:Rt25R,q27,q5£9’n:RqTR+ 3-‘CIR,T756R

The main term of the asymptotic density i (R, Agg)q) is %I? and it does not

depend of q.

The codes of the family Ag)q are shorter than those of the family arising
m_ 1 m__q
qq—l ’ qq—l

from the direct sum of the | — mlq1l perfect Hamming codes, see,

e.g., [2, formula (5)].
3 Small p-saturating sets in the spaces PG(p+ 1,q)

We introduce a new concept of N-fold strong blocking set.

Definition 3.1 A subset B of a projective space PG(N, q) is an N-fold strong
blocking set if every hyperplane of PG(N,q) is spanned by N points in B.
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Theorem 3.2 Let q = (¢')*™L. Any (p + 1)-fold strong blocking set in a sub-
space
PG(p+1,¢) C PG(p+1,q) is a p-saturating set in the space PG(p+1,q).

Theorem 3.3 Let ¢ = (¢')*. In PG(2,q) there is a 1 -saturating set of size
2./q+24/G+2.

Theorem 3.4 Let ¢ = (¢')%, ¢ prime, ¢ < 73. In PG(2,q) there is a I-
saturating set of size 2,/q + 2/q + 2.$/q + 2.

Let xg, 21, x2, x3 be homogenous coordinates for the points in PG(3, q) and
let 11, 12,13 be lines in PG(3, q) with equations l; : g = x93 = 0; 12 : 1 = x3 = 0;
l3 : 9 = x3, *1 = 9. The lines are contained in the hyperbolic quadric Q :
roxr1 = xox3. Let g be any line disjoint from Q. We denote B =1; UlaUl3Ug.
The following can be proved.

Theorem 3.5 The set B of size 4q + 4 is a 3-fold strong blocking set in
PG(3,q).

The following result shows that N-fold strong blocking sets can be obtained
by an inductive construction . Each inductive steps consists of embedding the
blocking set in a higher dimensional space, and then adding the union of some
properly chosen lines.

Theorem 3.6 Assume that there exists an N-fold strong blocking set in PG(N, q)
of size k. Then there exists an (N + 1)-fold strong blocking set in PG(N +1,q)
of size

E+14(N+1)(g—1).

Corollary 3.7 In PG(N,q), N > 3, there exists an N -fold strong blocking set

of size
- (2e0eD

—2) + N +5.
5 >++

Corollary 3.8 Let g = (¢')*™!, p > 1. Then there exists a p-saturating set in
PG(p+1,q) of size

(»/g—1) <(p+1)2(p+2) —2)+p+6.

4 Infinite families .A%)q of [n,n — (Rt +1)],R codes

We use p-saturating sets in the spaces PG(p + 1,¢), obtained in the previous
section, as starting points for the ¢™-concatenating constructions of [2]-[5]. To
this end, it is useful that the set B described in Section 3 and the p-saturating
set of Corollary 3.8 consist of lines.
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Theorem 4.1 There exist infinite families Ag)q of [n,n —r]gR codes with the
following parameters:

“452,1 L R=2r=2+1>3,q=(¢) n=2(VG+ ¥a+1)q7 + LQT?J :
7 (1) 4 6 4 4
(2, A501) =2+ ——+— E—
! ! Vi \f VP a
AV, L R=2 r=2t4+12>3, q=(¢)% ¢ prime, ¢ <73, r £9,13,
n=2(/a+a+ ¥a+1)gT +2/gT .
A:(J,%; : R=3,r=3t+1>7,q= (q/)S > 64, n:4(\3/a+1)q’"5;47
32 96 96 64
3, A = _ == el
( 3q) 3 \[ \/— 3q
(Ri1) r=(R+1) 1
r—(R+1 R —
Al o R>4, r=Rt+1, q=(¢)", n=npeq +(R—3)qqf1,
R(R+1
nre = (Ya-1) <(2+)—2) +R+5, t=1andt>ty, ¢° " > npg
The main term of the asymptotic density & q( Ag)q) (RQLI;) . Signifi-

cantly, it does not depend on q.

5 Infinite families Ag{)q of [n,n — (Rt + n)|,R codes,
n=12,3.. . . R—1

We construct small p-saturating sets in PG(N, (¢/)°™1), N = p+2, p+3,...,2p—
1.

Lemma 5.1 Fiz 1 < k < N. Let By be the subset of PG(N,q) consisting of
points whose weight is at most N — k + 1, i.e. By is the union of the (N —
k)-dimensional subspaces of equation x;, = ... = xz; = 0. Then every k-
dimensional subspace of PG(N,q) is generated by k + 1 independent points in
By.

Theorem 5.2 Let p be any positive integer. Let ¢ = (¢')P*!. Let N > p+ 1.
Then in PG(N,q) there exists a p -saturating set of size

b
Via(N+1,N—p+1)—1 (N+1\ ¥ fa
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For a parameter n € {2,3,...,p} we take N = p+n. Then the length of the
[MR,qms MR,qm — (R +n)]gR code related to the p-saturating set of Theorem 5.2
is equal to

ey i (R+n

v/ — 1B ) -1

o Ben)
R,qmn — % -1 R—1 q

The code is an (R, {)-object with ¢ > 3, see [2, Section II] for definitions of

(R, ¢)-objects and (R, ¢)-partitions. We use it as the starting code of the ¢™-

concatenating constructions of [2, Th. 3.1, Condition A2] with the trivial (R, ¢)

-partition.

Theorem 5.3 Let g = (¢')' and let R > 4. We fiz the parametern € {2,3, ...,

R — 1}. Then there is an infinite family Ag)q of [n,n — r|qR codes with the

following parameters

r—(R+n)
r—(R+n) R
AP R>4, r=Rt+n, = ()% n=Tpgne & + (R_?’)qqfl
t=1andt>ty, ¢ > NRg,.
R2-R
The main term of the asymptotic covering density 7, (R, Agg)q) is %’

which does not depend of gq.
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