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Abstract. In this work a heuristic algorithm for obtaining lower bounds on the
covering radius of a linear code is developed. Using this algorithm the least covering
radii of the binary linear codes of dimension 6 are determined. Upper bounds for
the least covering radii of binary linear codes of dimensions 8 and 9 are derived.

1 Introduction

In this work we address two problems: the mathematical question of determin-
ing t2[n, k], the smallest covering radius of any binary linear [n, k] code, and
the more practical problem of constructing codes having a specified length and
dimension and the least covering radius. More precisely we determine all values
of the function t2[n, 6] and give constructions for such codes. An important part
of the determination of the values of t2[n, 6] is the suggested heuristic algorithm
for computation of lower bound of the covering radius of a linear code. We also
derive upper bounds for t2[n, 8] and t2[n, 9].

2 Some preliminary results

Let Fn
q be the n-dimensional vector space over the finite field with q elements.

A linear code C is a k-dimensional subspace of Fn
q . The ball of radius t around

a word y ∈ Fn
q is defined by

{x|x ∈ Fn
q , d(x, y) ≤ t}.

Then the covering radius R(C) of a code C is defined as the least possible
integer number such that the balls of radius R(C) around the codewords cover
the whole Fn

q , i.e.
R(C) = max

x∈F n
q

min
c∈C

d(x, c).

A coset of the code C defined by the vector x ∈ Fn
q is the set x+C = {x+c | c ∈

C}. A coset leader of x + C is a vector in x + C of smallest weight. When
the code is linear its covering radius is equal to the weight of the heaviest coset
leader.
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The function tq[n, k] is defined as the least value of R(C) when C runs over
the class of all linear [n, k] codes over Fq for a given q.

Definition. [1] Let C be a binary code of length n and covering radius
R. For i = 1, . . . , n let C

(i)
0 (respectively C

(i)
1 ) denote the set of codewords in

which the i-th coordinate is 0 (respectively 1). The integer

N (i) = max
x∈F n

2

{d(x,C
(i)
0 ) + d(x,C

(i)
1 )}

is called the norm of C with respect to the i-th coordinate and

Nmin = min
i

N (i)

is called the minimum norm of C. (We use the convention that d(x, 0) = ∞.)
The code C has norm N if Nmin ≤ N and the coordinates i for which N (i) < N
are called acceptable with respect to N .

The code C is normal if it has norm 2R + 1. If N (i) ≤ 2R + 1, then we say
that the coordinate i is acceptable with respect to 2R + 1, or that C is normal
with respect to the i-th coordinate.

In the following theorem results about the normality of binary linear codes
are summarized.

Theorem 1. [1] If C is an [n, k, d] code with n ≤ 15, k ≤ 5 or n− k ≤ 9,
then C is normal.

One of the main reasons for studying normal codes is the amalgamated direct
sum (ADS) construction introduced by Graham and Sloane [2].

Theorem 2 [1] Assume that A is a normal binary [nA, kA]RA code with the
last coordinate acceptable, and B is a normal binary [nB, kB]RB code with the
first coordinate acceptable. Then their amalgamated direct sum (ADS)

A⊕̇B = {(a, 0, b)|(a, 0) ∈ A, (0, b) ∈ B} ∪ {(a, 1, b)|(a, 1) ∈ A, (1, b) ∈ B}
is an [nA + nB − 1, kA + kB − 1]R code with R ≤ RA + RB. More generally,
if the norm of A with respect to the last coordinate is NA and the norm of
B with respect to the first coordinate is NB, then the code A⊕̇B has norm

NA+NB−1 and hence covering radius at most
1
2
(NA + NB − 1). In particular,

if the covering radius of A⊕̇B equals RA + RB, then A⊕̇B is normal and the
overlapping coordinate is acceptable.

3 Least covering radius of the binary linear codes of
dimension 6

The results about the least covering radius of binary linear codes are summa-
rized in Table 7.1 from [1] where the exact values or bounds for t2[n, k] for codes
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of lengths up to 64 are given. We use this table as a source of our investigation
and give the results for codes of dimension 6 in the following table.

Bounds on t2[n, 6] for n ≤ 64
n 7 8 9 10 11 12 13 14 15 16
t2[n,6] 1 1 1 2 2 3 3 3 4 4
n 17 18 19 20 21 22 23 24 25 26
t2[n,6] 5 5 5 6 6 6-7 7 7-8 7-8 8-9
n 27 28 29 30 31 32 33 34 35 36
t2[n,6] 8-9 9-10 9-10 9-11 10-11 10-12 11-12 11-13 11-13 12-14
n 37 38 39 40 41 42 43 44 45 46
t2[n,6] 12-14 13-15 13-15 14-16 14-16 14-17 15-17 15-18 16-18 16-19
n 47 48 49 50 51 52 53 54 55 56
t2[n,6] 17-19 17-20 17-20 18-21 18-21 19-22 19-22 20-23 20-23 20-24
n 57 58 59 60 61 62 63 64
t2[n,6] 21-24 21-25 22-25 22-26 23-26 23-27 23-27 24-28

The values of t2[n, k] for codes of dimensions up to 5 are determined in
[2] and also an upper bounds for t2[n, k] for codes of dimensions 6 and 7 are
derived. Namely, in [2, Theorem 23] it is proved that

t2[n, 6] ≤
⌊

n− 8
2

⌋
for n ≥ 18, and t2[n, 7] ≤

⌊
n− 9

2

⌋
for n ≥ 19.

In this work we show that the bound for codes of dimension 6 is sharp.
The approach we use is similar to the approach from [2] and it is based on the
determination of the covering radii of the projective codes of dimension 6. We
will note that the covering radii of the binary projective codes of dimensions
up to 5 are determined in [3] and [4].

Theorem 3. t2[n, 6] =
⌊

n− 8
2

⌋
, for n ≥ 18.

Proof. For codes of lengths 18-21 values of t2[n, 6] are known and they
fulfill the condition of the Theorem. For the rest of the codes of lengths up
to 64 the upper bounds from the Table coincide with the value given in the
theorem. What remains is to prove that these upper bounds are sharp. Let us
consider the first open case [22, 6] codes. If a [22, 6] code C contains a repeated
coordinate, then R(C) ≥ t2[20, 6] + 1 = 7. Thus, if there exits a [22, 6] code
of covering radius 6 it must be a projective one. Classification of all binary
projective codes of dimension up to 6 is done in [5]. We use the results of
this classification where 2852541 nonequivalent binary [22, 6] codes are found,
to show that there is no code of covering radius 6 among them. Therefore
t2[22, 6] = 7. Let now C be a [24, 6] code. The same reasoning shows that
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t2[24, 6] = 8 and as t2[25, 6] ≥ t2[24, 6] we get t2[25, 6] = 8. We repeat this until
t2[54, 6] = t2[55, 6] = 23.

Let C be a [56, 6] code. If it contains a repeated coordinate, then R(C) ≥
t2[54, 6] + 1 = 23 + 1 = 24. Otherwise, C is a shortened version of the [63, 6]
Simplex code whit covering radius 31 and thus R(C) ≥ 31− 7 = 24. Therefore
t2[56, 6] = 24 and t2[57, 6] = 24. Similarly t2[58, 6] = t2[59, 6] = 25, t2[60, 6] =
t2[61, 6] = 26 and t2[62, 6] = t2[63, 6] = 27.

For n ≥ 64, every [n, 6] code must contain a repeated coordinate and
t2[n, 6] ≥ t2[n−2, 6]+1, which implies t2[n, 6] ≥ b(n−8)/2c for all n. Therefore
the upper bound is sharp, which completes the proof. ¤

The other aim of our investigation is to construct codes having covering radii
equal to the least one. Here we will show how to do this. It is proved in [6]
that the constructed in [2] [14, 6, 5]3 code is unique. A [16, 6]4 or [18, 6]5 code
can be obtained by the [14, 6]3 code by adding repeated coordinates. Again
in [2] the generator matrix of [19, 6, 7]5 code is presented. As [19, 6]5 codes
must be projective (t2[19, 5] ≥ t2[17, 6] + 1 = 6), we use the classification from
[5] to determine the covering radii of all 366089 projective [19, 6] codes. It
turned out that there is only one code with covering radius 5 and therefore the
[19, 6, 7]5 code is unique. Then every [n, 6] code for n > 19 having the least
covering radius can be obtained from the [18, 6]5 or [19, 6]5 codes by adding the
necessary number of repeated coordinates. By adding repeated coordinates to
the [9, 6]1 code we can obtain [11, 6]2, [13, 6]3, [15, 6]4 and [17, 6]5 codes, and
to the [8, 6]1 code we can get [10, 6]2 and [12, 6]3 codes. We classify all [8, 6]
and [9, 6] codes and among the 25 [8, 6] and 99 [9, 6] nonequivalent codes there
are correspondingly 16 and 4 of covering radius 1.

4 A heuristic algorithm for lower bound of the cov-
ering radius of a linear code

In the proof of Theorem 1 we use a computer to show the nonexistence of codes
of lengths 22 ≤ n ≤ 54, n odd, and given covering radius. There are 236779414
such codes and if we try to determine their covering radii using one of the known
for us algorithms it would take years. Here we present a heuristic algorithm
which alows us to show the nonexistence of an [n, k]R code C in a reasonable
time.

The idea of the algorithm is as fast as possible to find a coset leader of
the investigated code of weight greater than R, which means that the covering
radius of the code is at least R + 1. It starts with a randomly chosen vector
c from a coset Kc = {c + C}. We use the evaluation function f to find the
current best solution, where the aim is to minimize the number of vectors of
minimum weight in the coset. The function f = wt(Kc)2k−A(Kc) depends on
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the weight of the coset wt(Kc) and the number A(Kc) of vectors of minimum
eight in Kc. Then we search in the set of neighbors N(c) consisting of vectors
which differ from c in one coordinate. If in this procedure we obtain a coset of
weight greater than R, we are done. Otherwise, we add some noise to c and
again try to find a coset of weight greater than R.

Algorithm. LowerBoundCoveringRadius(Rmin)
c, c′: vector;
br0,br: integer;
{

br0 := 0;
while br0 < const0
{

br0 := br0 + 1;
br := 0;
Select a feasible solution c;
while br < const
{

br := br + 1;
while exists c′ ∈ N(c) such that f(c′) > f(c) do c := c′;
if wt(Kc) > Rmin break;

Add some noise to c;
}

}
}

5 Upper bounds for the covering radii of linear codes
of dimensions 8 and 9

Theorem 4. t2[n, 8] ≤
⌊

n− 10
2

⌋
for n ≥ 16 and t2[n, 9] ≤ ⌊

n−12
2

⌋
for n ≥ 25.

Proof. Let us consider the direct sum of two [9, 4]2 normal codes. According
to Theorem 9 from [2] we obtain [18, 8]4 normal code and the existence of
[18+2i, 8]4+ i codes for i > 0 follows from [2, Theorem 20]. The same way the
direct sum of [8, 4]2 and [9, 4]2 normal codes gives [17, 8]4 normal code and there
exist [17 + 2i, 8]4 + i codes for i > 0. From [1, Table 7.1] we have t2[16, 8] = 3
which completes the proof for the first upper bound.

Let us now consider the amalgamated direct sum of [7, 4]1 and [14, 6]3 nor-
mal codes. The result is a [20, 9]4 code which according to Theorem 2 is normal.
A [25, 9]6 normal code can be obtained by an ADS of [7, 4]1 code and the con-
structed in [2] and proved to be unique in this work [19, 6]5 code. As in the
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previous case, we can conclude that the [20 + 2i, 9]4 + i and [25 + 2i, 9]6 + i
codes for i > 0 exist and the upper bound for t2[n, 9] follows. ¤
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