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Summary The structure of Steiner quadru-
ple system S(v, 4, 3) of full 2-rank v — 1 is con-
sidered. It is shown that there are two types
(induced and singular) of such systems. It is
shown that induced Steiner systems can be ob-
tained from Steiner systems S(v, 4, 3) of 2-rank
v — 2 by switching construction which is intro-
duced here.



Introduction. A Stener system S(n,k,t)
is a pair (J, B) where J is a v-set and B is a
collection of k-subsets of J such that every t-
subset of J is contained in exactly one member
of B. The necessary condition for existence ot
an SQS(v) is that v = 2 or 4 (mod 6). Hanani
[1960] proved that the necessary condition for
the existence of an S(v, 4, 3) is also sufficient.

A Steiner system S(v, 4, 3) is called resolvable
if it can be split into mutually non-overlapping
sets so that every set is a Steiner system S(v, 4, 1).



We consider the Steiner systems S(v, 4, 3) of
full 2-rank, i.e. of rank v — 1 over F5. Any such
system 1s one of two types, which we call in-
duced and singular. The induced systems can
be obtained by a switching operation (which we
derive here) from Steiner systems S(v,4,3) of
2-rank v — 2. This operation allows to con-
struct Steiner systems of rank r + 1 from sys-
tems of rank r. This operation is also inter-
esting for the construction of resolvable Steiner
systems. Namely, 1t keeps this property under
certain conditions.

The case n = 16 is considered in details. In
particular, we found exactly 305616 non-isomorphic
induced Steiner systems S(16, 4, 3), which were
constructed by the switching operation from all
708103 non-isomorphic systems S (16, 4, 3) of rank
14.



2. Preliminary results.
Let E = {0,1}. Denote a binary code C' with
length n, with minimum distance d and cardi-
nality NV as a (n,d, N)-code. Denote by wt(x)
the Hamming weight of vector & over E. For a
(binary) code C' denote by (C') the linear enve-
lope of words of C' over F5. The dimension of
space (C) is called the rank of C' over F5 and
is denoted rank(C').

Denote by (n,w, d, N) a binary constant weight
code C of length n, with weight of all codewords
w, with minimum distance d and cardinality /V.



The binary (n,d, N)-code A which is a lin-
ear k-dimensional space over F5 is denoted by
n, k,d]-code. For any (n,d, N)-code (linear,
nonlinear, or constant weight) denote by Cct
1ts dual code:

Ct = {veF}: (v-e)=0,VeeCl
where
(v-¢c)=wvier + - +vpep

Clearly C is a linear [n,n — k, d-]-code with
some minimum distance d--, where k = rank(C).



Denote by £ the set of all binary vectors of
length n of weight 2. Let J, = {1,2,...,n}
be the coordinate set of E™ and let S, be the
full group of permutations of n elements (thus
|Sp| = n!). A binary incidence matrix of a
Steiner system S(v, 4, 3) is an optimal constant
weight (v, 4,4, v(v — 1)(v — 2)/24)-code C'.

In this note, the Steiner system S(v,4,3) is
identified with the constant weight (v, 4, 4, v(v—

1)(v — 2)/24)-code, which uniquely defines this
system (Semakov-Zinoviev [1969)).

Definition 1 Two Steiner systems (J, B)
and (J',B") of order n are isomorphic, if
their incidence matrices S and S’ are equiv-
alent as constant weight codes, i.e. if there
exists some permutation T € Sy, such that S
and 7S" coincide up to the permutation of
rows.



3. Switching constructions of SQS(v).
Let C' be a Steiner system S(v, 4, 3) of 2-rank
r < v — 2. By proper permutation of coordi-

nates, C' can be presented in the form, when the
v, v/2,2]-code C'+, orthogonal to (CY, is

OJ_ — {’LLO,’LLl,’LLQ,ul—I—’LLQ}, <1)

where u is the zero vector, wy = (11...1[00...0),
and ug = (00...0[11...1). Thus we split v
coordinates into two blocks of v/2 coordinates
such that any ¢ € C consists of two vectors

c = (c1|ec9) where each vector ¢; satisfies to
the overall parity checking:

wt(c;) =0 (mod 2), 1 =1,2

(we call it a parity rule).



Definition 2 Define the following (constant

weight) (8,4,4,8)-codes:

(1111

) (1100
Cp =+ (1010
L (

1001

and

1110
1011
1000

<
-] |
(0010

0000
1100
1010
0110

)

)

)
),
)
),

1000
0010
1110
1011

)

)

)
),
)
)

~

(0000
(0011
(0101

1111)
0011),
0101),

7

(0110]1001)

(1101
(0111
(0100

0100),

)
0001),
1101),

(0001]0111)

/



Note that the codes C'p and C'jr above differ
by the permutations of the columns with num-
bers 4 and 5, what is equivalent, by interchang-
ing of the elements 0 and 1 in these columns
(i.e. by switching of these two columns).

For a given permutation @ € Sy denote by
Cr(py (respectively, by C ) the code ob-
tained from Cp (respectively, from Cpr) by ap-
plying m to the last 4 columns of the code Cp
(respectively C'y).

Note also that the middle six columns of C'p
define two Pasch configurations.



Theorem 1 (switching construction).

Let S be a Steiner system S(v,4,3) of 2-rank
r < v —2. and let C be the corresponding
constant weight (v,4,4,v(v — 1)(v — 2)/24)-
code with orthogonal code (1), i.e. all code-
words ¢ = (c1 | ey) from C' satisfy the parity
rule. Assume that C' contains as a subcode
the code Ow(P) for some m € §. Define the
new code

C*(n(P)) = (C \ OT('(P)) U Oﬂ'(N)’
Then:

1). The set C* = C*(w(P)) is a constant
weight (v, 4,4, v(v—1)(v—2)/24)-code, which
defines a new Steiner system S(v,4,3), de-
noted by S* = S*(n(P)).

2). The new system S* is not isomorphic
to the initial system S (since they have dif-
ferent number of Pasch configurations).






3). If the initial system S is resolvable and
if the code C’]T(P) belongs to exactly four par-
allel classes of C, then the resulting system
S* is resolvable too.

4). Let the initial system S has a 2-rank
r=v—2 and let 1t 1s divided into two parts,
such that each part satisfies the parity rule.
If the first four nonzero positions of C’W<p)
belong to the left hand side of C' and the
rest four nonzero positions of Cw(P) belong
to the right hand side of C, then the 2-rank
r* of resulting system S™ is increasing, i.e.
r*=r+1=v-—1.



4. The structure of Steiner systems
S(v,4,3) with rank v — 1 over F.
Let S = S(v,4,3) be of rank v — 1 over F5.
Divide the coordinate set J = {1,2,...,v} of
S into two arbitrary equal halves: Jy and Jo.
Applying some permutation m € Sy, any vec-
tor ¢ € w(C') can be presented in the form
c = (¢ | ¢9), where supp(c;) € J; for i = 1,2.
Hence without loss of generality assume that Jy
is the left half of J and .Jy is the right half of
Jo.

Definition 3 For any Steiner system S(v, 4, 3)
of rank v—1 over Fy define the left and right
spectrum (x;,y;,2;), t = 1,2 as follows:

zi = {e=(c1]|eg) 1 wt(e;) =4},

yi = He=(c1]|ea): wi(e;) = 3},
2i = {e=(e1]eg) o wi(e;) =2}




Lemma 1 Let S be an arbitrary Steiner sys-
tem S(v,4,3) of 2-rank v — 1 over Fy. Then

T =x =22, Y=Yl =Y, Z=2] = 20
Furthermore

s () e ()
(2)

Clearly for the same system the numbers x, y
and z depend on the choice of subsets J;.



Definition 4 We say that 4 different bi-
nary vectors of length v and weight 3 form

a 4-clique, if
4
| supp(w;)| = 4.
1=1

Lemma 2 Let X be a constant weight (v, 4,4, )
code with cardinality

r<vv-—1)(v—2)/24 2.
Denote by Y the constant weight (v,3,2,y)

code, formed by all vectors of weight 3, which
are not covered by codewords of X, i.e.

()

Then X can be imbedded into a Steiner sys-
tem S(v,4,3), if and only if all the codewords
of Y can be partitioned into disjoint 4-cliques

Ch,...,CL, k=y/4, such that
supp(C;) Nsupp(Cy)| <2 for any i # j.



5. Induced Steiner systems S(v,4,3).
We say that a Steiner system S = S(v, 4, 3) of
full rank » = v — 1 is wnduced, if it is obtained
by the switching construction from some Steiner
system S’ = S(v,4,3) of rank < v — 2. In the
contrary case, we call this system singular.

Theorem 2 Let S = S(v,4,3) be a Steiner
system of rank r = v — 1 over Fy with spec-
trum (x,y, z) and let v is a multiple of 4. Let
X; and Y be the corresponding (v/2,4,4,x)-
and (v/2,3,2,y)-codes, where y satisfies (2)
and 1,5 € {1,2}. If X1 and X9 are any sub-
codes of a Steiner system S’ = S(v/2,4,3),
then S is an induced system.



It is known (Z-Z [2006], Kaski-Ostergard-Pottonen
2006]) that there are exactly 708103 non-isomorphic
Steiner systems SQS(16) of rank 14 over F5. By
computations it was found that all these 708103
systems give 295488 different double Pasch con-
figurations. For each system SQS(16) of rank
14, containing some double Pasch configurations
we have applied all possible switchings.

Theorem 3 (Computational results). There
are 305616 non-isomorphic induced Steiner
systems S(16,4,3) of rank 15 over Fy. They
are obtained from 708103 non-isomorphic Steiner
systems SQS(16) of rank 14 over Fy by apply-

ing all possible switchings.

Remark 1 Taking into account the result of
(Kaski-Ostergdrd-Pottonen [2006]) we con-
clude that there are exactly 27715 non-isomorphic
singular Steiner systems S(16,4,3) of rank

15.
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