BOUNDS ON MINIMUM DISTANCE IN CONSTACYCLIC CODES

DIANA RADKOVA, A. J. VAN ZANTEN

"St. Kl. Ohridski" University of Sofia,
Faculty of Mathematics and Informatics
Department of Algebra
5 James Bouchier Blvd., 1164 Sofia, Bulgaria

Delft University of Technology,
Faculty of Information Technology and Systems
Department of Mathematics,
P.O. Box 5031, 2600 GA Delft, The Netherlands

18.06.2008
Definition
Let \(a \) be a nonzero element of \(F = \text{GF}(q) \). A code \(C \) of length \(n \) over \(F \) is called constacyclic with respect to \(a \), if whenever \(x = (c_1, c_2, \ldots, c_n) \) is in \(C \), so is \(y = (ac_n, c_1, \ldots, c_{n-1}) \).
Definition

Let a be a nonzero element of $F = \mathbb{GF}(q)$. A code C of length n over F is called constacyclic with respect to a, if whenever $x = (c_1, c_2, \ldots, c_n)$ is in C, so is $y = (ac_n, c_1, \ldots, c_{n-1})$.

Let $0 \neq a \in F$ and let

$$
\psi_a : \begin{cases}
F^n \to F^n \\
(x_1, x_2, \ldots, x_n) \mapsto (ax_n, x_1, \ldots, x_{n-1})
\end{cases}.
$$
Definition
Let \(a \) be a nonzero element of \(F = \mathbb{GF}(q) \). A code \(C \) of length \(n \) over \(F \) is called constacyclic with respect to \(a \), if whenever \(x = (c_1, c_2, \ldots, c_n) \) is in \(C \), so is \(y = (ac_n, c_1, \ldots, c_{n-1}) \).

- Let \(0 \neq a \in F \) and let

\[
\psi_a : \begin{cases} \mathbb{F}^n & \rightarrow \mathbb{F}^n \\ (x_1, x_2, \ldots, x_n) & \mapsto (ax_n, x_1, \ldots, x_{n-1}) \end{cases}
\]

- Then \(\psi_a \in \text{Hom } \mathbb{F}^n \) and it has the following matrix

\[
A(n, a) = A = \begin{pmatrix} 0 & 0 & 0 & \ldots & a \\ 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 0 \end{pmatrix}
\]

with respect to the standard basis \(e = (e_1, e_2, \ldots, e_n) \).
The characteristic polynomial of A is

\[f_A(x) = (-1)^n(x^n - a) = f(x). \]
The characteristic polynomial of A is

\[f_A(x) = (-1)^n(x^n - a) = f(x). \]

Let $f(x) = (-1)^n f_1(x) \ldots f_t(x)$ be the factorization of $f(x)$ into irreducible factors over F.
The characteristic polynomial of A is

$$f_A(x) = (-1)^n(x^n - a) = f(x).$$

Let $f(x) = (-1)^n f_1(x) \ldots f_t(x)$ be the factorization of $f(x)$ into irreducible factors over F.

$$U_i = \text{Ker } f_i(\psi_a), \ i = 1, \ldots, t.$$
Theorem

Let C be a linear constacyclic code of length n over F. Then the following facts hold:
Theorem
Let C be a linear constacyclic code of length n over F. Then the following facts hold:
1) C is a constacyclic code iff C is a ψ_a-invariant subspace of F^n;
Theorem

Let C be a linear constacyclic code of length n over F. Then the following facts hold:

1) C is a constacyclic code iff C is a ψ_a–invariant subspace of F^n;
2) $C = U_{i_1} \oplus \cdots \oplus U_{i_s}$ for some minimal ψ_a–invariant subspaces U_{i_r} of F^n and $k := \dim_F C = k_{i_1} + \cdots + k_{i_s}$;
Theorem
Let C be a linear constacyclic code of length n over F. Then the following facts hold:
1) C is a constacyclic code iff C is a ψ_a–invariant subspace of F^n;
2) $C = U_1 \oplus \cdots \oplus U_s$ for some minimal ψ_a–invariant subspaces U_i of F^n and $k := \dim_F C = k_1 + \cdots + k_s$;
3) $f_{\psi_a|_C}(x) = (-1)^k f_{i_1}(x) \cdots f_{i_s}(x) = g(x)$;
4) $c \in C$ iff $g(A)c = 0$;
5) the polynomial $g(x)$ has the smallest degree with respect to property 4);
6) $\text{rank}(g(A)) = n - k$.
7) The matrix H, the rows of which are an arbitrary set of $n - k$ linearly independent rows of $g(A)$, is a parity check matrix of C.
Theorem
Let C be a linear constacyclic code of length n over F. Then the following facts hold:
1) C is a constacyclic code iff C is a ψ_a--invariant subspace of F^n;
2) $C = U_{i_1} \oplus \cdots \oplus U_{i_s}$ for some minimal ψ_a--invariant subspaces U_{i_r} of F^n and $k := \dim_F C = k_{i_1} + \cdots + k_{i_s}$;
3) $f_{\psi_a|_C}(x) = (-1)^k f_{i_1}(x) \cdots f_{i_s}(x) = g(x)$;
4) $c \in C$ iff $g(A)c = 0$;
Theorem
Let C be a linear constacyclic code of length n over F. Then the following facts hold:
1) C is a constacyclic code iff C is a ψ_a–invariant subspace of F^n;
2) $C = U_{i_1} \oplus \cdots \oplus U_{i_s}$ for some minimal ψ_a–invariant subspaces U_{i_r} of F^n and $k := \dim_F C = k_{i_1} + \cdots + k_{i_s}$;
3) $f_{\psi_a|_C}(x) = (-1)^k f_{i_1}(x) \cdots f_{i_s}(x) = g(x)$;
4) $c \in C$ iff $g(A)c = 0$;
5) the polynomial $g(x)$ has the smallest degree with respect to property 4);
Theorem
Let C be a linear constacyclic code of length n over F. Then the following facts hold:
1) C is a constacyclic code iff C is a ψ_a-invariant subspace of F^n;
2) $C = U_{i_1} \oplus \cdots \oplus U_{i_s}$ for some minimal ψ_a-invariant subspaces U_{i_r} of F^n and $k := \dim_F C = k_{i_1} + \cdots + k_{i_s}$;
3) $f_{\psi_a|_C}(x) = (-1)^k f_{i_1}(x) \cdots f_{i_s}(x) = g(x)$;
4) $c \in C$ iff $g(A)c = 0$;
5) the polynomial $g(x)$ has the smallest degree with respect to property 4);
6) $\text{rank } (g(A)) = n - k$.
Theorem
Let C be a linear constacyclic code of length n over F. Then the following facts hold:
1) C is a constacyclic code iff C is a ψ_a—invariant subspace of F^n;
2) $C = U_{i_1} \oplus \cdots \oplus U_{i_s}$ for some minimal ψ_a—invariant subspaces U_{i_r} of F^n and $k := \dim_F C = k_{i_1} + \cdots + k_{i_s}$;
3) $f_{\psi_a \mid C}(x) = (-1)^k f_{i_1}(x) \cdots f_{i_s}(x) = g(x)$;
4) $c \in C$ iff $g(A)c = 0$;
5) the polynomial $g(x)$ has the smallest degree with respect to property 4);
6) $\text{rank} (g(A)) = n - k$.
7) The matrix H, the rows of which are an arbitrary set of $n - k$ linearly independent rows of $g(A)$, is a parity check matrix of C.
Let $K = \mathbb{GF}(q^m)$ be the splitting field of the polynomial $f(x) = (-1)^n(x^n - a)$ over F and let the eigenvalues of ψ_a be $\alpha_1, \ldots, \alpha_n$, where $\alpha_i = \sqrt[n]{a}\alpha^i$.

Theorem

Let C be a linear constacyclic code of length n over F, $g(x) = f(\psi_a|_C(x))$ and $h(x) = f(x)g(x)$.

Let for some integers $b \geq 1$ and $\delta \geq 1$ the following equalities $h(\alpha^{b}) = h(\alpha^{b}+1) = \cdots = h(\alpha^{b+\delta-2}) = 0$ hold. Then the minimum distance of the code C is at least δ.

Let \(K = \mathbb{GF}(q^m) \) be the splitting field of the polynomial \(f(x) = (-1)^n(x^n - a) \) over \(F \) and let the eigenvalues of \(\psi_a \) be \(\alpha_1, \ldots, \alpha_n \), where \(\alpha_i = \sqrt[n]{a} \alpha^i \).

Theorem

Let \(C \) be a linear constacyclic code of length \(n \) over \(F \), \(g(x) = f_{\psi_a}\big|_C(x) \) and \(h(x) = \frac{f(x)}{g(x)} \). Let for some integers \(b \geq 1 \), and \(\delta \geq 1 \) the following equalities

\[
h(\alpha_b) = h(\alpha_{b+1}) = \cdots = h(\alpha_{b+\delta-2}) = 0
\]

hold. Then the minimum distance of the code \(C \) is at least \(\delta \).
Definition
A set $M = \{\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_l}\}$ of zeros of the polynomial $x^n - a$ in K will be called a consecutive set of length l if a primitive n–th root of unity β and an exponent i exist such that $M = \{\beta_i, \beta_i+1, \ldots, \beta_{i+l-1}\}$, with $\beta_s = \sqrt[n]{a}\beta^s$.

Corollary
Let C be a linear constacyclic code of length n over F and let $\alpha_{b_1}, \alpha_{b_2}, \ldots, \alpha_{b_2+s}$ are zeros of $h(x)$, where $(s, n) = 1$. Then the minimum distance of C is at least δ.
Definition
A set \(M = \{\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_l}\} \) of zeros of the polynomial \(x^n - a \) in \(K \) will be called a consecutive set of length \(l \) if a primitive \(n \)-th root of unity \(\beta \) and an exponent \(i \) exist such that \(M = \{\beta_i, \beta_{i+1}, \ldots, \beta_{i+l-1}\} \), with \(\beta_s = \sqrt[n]{a} \beta^s \).

Corollary
Let \(C \) be a linear constacyclic code of length \(n \) over \(F \) and let

\[\alpha_{b}, \alpha_{b+s}, \ldots, \alpha_{b+(\delta-2)s} \]

are zeros of \(h(x) \), where \((s, n) = 1 \). Then the minimum distance of \(C \) is at least \(\delta \).
Theorem

Let C be a constacyclic code of length n over the field F, $g(x) = f_{\psi_a}|_C(x)$, $h(x) = \frac{f(x)}{g(x)}$, and let α be a primitive n-th root of unity in K. Assume that there exist integers s, b, c_1 and c_2 where $s \geq 0$, $b \geq 0$, $(n, c_1) = 1$ and $(n, c_2) < \delta$, such that

$$h(\alpha^{b + i_1 c_1 + i_2 c_2}) = 0, \quad 0 \leq i_1 \leq \delta - 2, \quad 0 \leq i_2 \leq s.$$

Then the minimum distance d of C satisfies $d \geq \delta + s$.

Theorem

Let C be a constacyclic code of length n over the field F, $g(x) = f_{\psi_a|_C}(x)$, $h(x) = \frac{f(x)}{g(x)}$, and let α be a primitive n-th root of unity in K. Assume that there exist integers s, b, c_1 and c_2 where $s \geq 0$, $b \geq 0$, $(n, c_1) = 1$ and $(n, c_2) < \delta$, such that

$$h(\alpha^{b + i_1 c_1 + i_2 c_2}) = 0, \quad 0 \leq i_1 \leq \delta - 2, \quad 0 \leq i_2 \leq s.$$

Then the minimum distance d of C satisfies $d \geq \delta + s$.
Definition
If \(N = \{\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_t}\} \) is a set of zeros of the polynomial \(x^n - a \), we denote by \(U_N \) the matrix of size \(t \) by \(n \) over \(K \) that has \((\alpha_{i_l}, \alpha_{i_l}^2, \ldots, \alpha_{i_l}^n) \) as its \(l \)-th row, that is,

\[
U_N = \begin{pmatrix}
\alpha_{i_1} & \alpha_{i_1}^2 & \cdots & \alpha_{i_1}^n \\
\alpha_{i_2} & \alpha_{i_2}^2 & \cdots & \alpha_{i_2}^n \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{i_t} & \alpha_{i_t}^2 & \cdots & \alpha_{i_t}^n
\end{pmatrix}.
\]
Definition

If \(N = \{\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_t}\} \) is a set of zeros of the polynomial \(x^n - a \), we denote by \(U_N \) the matrix of size \(t \) by \(n \) over \(K \) that has \((\alpha_{i_l}, \alpha_{i_l}^2, \ldots, \alpha_{i_l}^n)\) as its \(l \)-th row, that is,

\[
U_N = \begin{pmatrix}
\alpha_{i_1} & \alpha_{i_1}^2 & \ldots & \alpha_{i_1}^n \\
\alpha_{i_2} & \alpha_{i_2}^2 & \ldots & \alpha_{i_2}^n \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{i_t} & \alpha_{i_t}^2 & \ldots & \alpha_{i_t}^n
\end{pmatrix}.
\]

\(U_N \) is a parity check matrix for the constacyclic code \(C \) over \(F \) having \(N \) as a set of zeros of \(h(x) \).
Definition

If $N = \{\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_t}\}$ is a set of zeros of the polynomial $x^n - a$, we denote by U_N the matrix of size t by n over K that has $(\alpha_{i_1}, \alpha_{i_1}^2, \ldots, \alpha_{i_1}^n)$ as its l–th row, that is,

$$U_N = \begin{pmatrix}
\alpha_{i_1} & \alpha_{i_1}^2 & \cdots & \alpha_{i_1}^n \\
\alpha_{i_2} & \alpha_{i_2}^2 & \cdots & \alpha_{i_2}^n \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{i_t} & \alpha_{i_t}^2 & \cdots & \alpha_{i_t}^n
\end{pmatrix}.$$

- U_N is a parity check matrix for the constacyclic code C over F having N as a set of zeros of $h(x)$.

- Let C_N be the constacyclic code over K with U_N as parity check matrix, and let this code has minimum distance d_N.
Theorem

If N is a nonempty set of zeros of the polynomial $x^n - a$ and if M is a set of n-th roots of unity such that $|\overline{M}| \leq |M| + d_N - 2$ for some consecutive set \overline{M} containing M, then $d_{MN} \geq d_N + |M| - 1$.

Corollary

Let N, M and \overline{M} be as in the previous theorem, with N consecutive. Then $|\overline{M}| < |M| + |N|$ implies $d_{MN} \geq |M| + |N| - 1$.
Theorem

If N is a nonempty set of zeros of the polynomial $x^n - a$ and if M is a set of n-th roots of unity such that $|\overline{M}| \leq |M| + d_N - 2$ for some consecutive set \overline{M} containing M, then $d_{MN} \geq d_N + |M| - 1$.

Corollary

Let N, M and \overline{M} be as in the previous theorem, with N consecutive. Then $|\overline{M}| < |M| + |N|$ implies $d_{MN} \geq |M| + |N|$.
Example

Take $n = 25$, $q = 7$, $a = -1$ and let μ be a primitive 50–th root of unity. Then μ is a zero of the polynomial $x^{25} + 1$. Let the zeros of $h(x)$ be μ^i with $i \in C_1 \cup C_5 \cup C_{17}$, where

$$C_1 = \{1, 7, 49, 43\}, \ C_5 = \{5, 35, 45, 15\}, \ C_{17} = \{17, 19, 33, 31\}.$$

Since μ is a primitive 50–th root of unity, it follows that $\alpha := \mu^2$ is a primitive 25–th root of unity. In terms of α_i the zeros of $h(x)$ can be written as

$$\alpha_2, \alpha_3; \alpha_7, \alpha_8, \alpha_9; \alpha_{15}, \alpha_{16}, \alpha_{17}; \alpha_{21}, \alpha_{22}; \alpha_{24}, \alpha_{25}.$$
Example

Take \(n = 25 \), \(q = 7 \), \(a = -1 \) and let \(\mu \) be a primitive 50–th root of unity. Then \(\mu \) is a zero of the polynomial \(x^{25} + 1 \). Let the zeros of \(h(x) \) be \(\mu^i \) with \(i \in C_1 \cup C_5 \cup C_{17} \), where

\[
C_1 = \{1, 7, 49, 43\}, \quad C_5 = \{5, 35, 45, 15\}, \quad C_{17} = \{17, 19, 33, 31\}.
\]

Since \(\mu \) is a primitive 50–th root of unity, it follows that \(\alpha := \mu^2 \) is a primitive 25–th root of unity. In terms of \(\alpha_i \) the zeros of \(h(x) \) can be written as

\[
\alpha_2, \alpha_3; \alpha_7, \alpha_8, \alpha_9; \alpha_{15}, \alpha_{16}, \alpha_{17}; \alpha_{21}, \alpha_{22}; \alpha_{24}, \alpha_{25}.
\]

Take \(N = \{\alpha_i \mid i = 15, 16\} \) and \(M = \{\beta^j \mid j = 0, 2, 3, 4\} \) with \(\beta = \alpha^3 \). Then the elements of \(MN \) are zeros of \(h(x) \). Since \(d_N = 3 \) and \(|M| = 5 \leq |M| + d_N - 2 = 4 + 3 - 2 \), the last bound implies that \(d \geq d_{MN} \geq |M| + d_N - 1 = 6 \).
THANK YOU FOR YOUR ATTENTION