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Applications of spherical codes to
modeling of vibration-induction modules

VICTOR BAICHEV vicmart@vicmart.com
Antrad, Inc.

PETER BOYVALENKOV peter@math.bas.bg
Institute of Mathematics and Informatics, BAS

KONSTANTIN DELCHEV math_k_delchev@yahoo.com
YAVOR PAprazoOv yavorpap@abv.bg

Faculty of Mathematics and Informatics, Sofia University

Abstract. A spherical code is finite set of points on the unit sphere. In this paper
we show how constructions, obtained from two spherical codes with large number
of points can be used for the modeling and design of vibration-induction modules,
based on permanent magnets.

1 Introduction

We denote by S, the sphere with center at the origin and radius r > 0, i.e.
ST = {ﬂj = (.T17$27$3) S R3 . SU% —’—I% —’—ﬂ’jg = ’[”2}‘

Definition 1.1 Every non-empty subset of the unit sphere S* is called a spher-
ical code. If C C S? is a spherical code then its cardinality is denoted by
M =|C]|.

We use the standard distance and inner product in R3.

Definition 1.2 We define minimum distance of C as
d(C) = min{d(z,y) : z,y € C,x # y}
and mazximal inner product as
s(C) = max{(z,y) : x,y € C,x # y},
The two values are connected by the obvious relations d(C) = /(2(1 — s(C)))

and s(C) =1— @ and in practice it is more convenient to work with the
inner product. Denote also a(C') = arccos(s(C)) and |C| = M.

Classical problems in the field ask for optimization of one of the parameters
M and s, while the other one is fixed. There are few known exact solutions
for fixed M (for M < 12 [1, 5, 6, 7]) and M = 24 [11] and the situation for
fixed s is similar. There are however several computer and purely mathematical
methods for obtaining close bounds of the optimal values [1, 6, 2].
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2 Problems under consideration

We consider a couple of practical questions that arise from the design of vib-
ration-induction modules, that have numerous applications in aero-space and
civil industry.

Problem 1 Arrange large number of equal right circular cylinders (called
'disks’ for short) on two concentric spheres. Every disc has height h and di-
ameter d. The centers of each disc’s base lie on the outer surface of the inner
sphere (on the inner surface of the outer sphere, resp.). Further, the following
three requirements hold:

(A1) The distance between arbitrary disc to its nearest neighbor on the
same sphere does not exceed a fixed distance, a function #,,;,(d) which depends
on the parameter d only.

(A2) The distance between any two distinct discs on the same sphere is at
least smin(d), a function which depends on the parameter d only.

(A3) The distance between any disc on a sphere to its nearest neighbor on
the other sphere is ”close” to d, i.e. it belongs to some interval [Ad, A\~!d], where
A < 1 is a constant which is close to 1.

For every admissible configuration for Problem 1 and for both spheres sep-
arately we are interested in the following.

Problem 2 Given a spherical code (', divide it into two sub-codes C; and
Cs, such as the following two conditions hold:

(B1) Z:pecl T~ er@ &3

(B2) The number of walls of the convex hull of C whose vertices belong
entirely in Cy or Cs is as minimum as possible.

The property (B1) can be strengthened to stay close to the so-called spher-
ical design property.

3 On Problem 1

One useful generalization of the spherical codes are the so-called Fuclidean
codes, which allow points to be placed on several concentric spheres. Thus
it is clear that problem 1 can be rephrased as a problem for Euclidean codes
E = C, | Cgr where C, and Cr are homothetic (with coefficients r and R resp.)
images of spherical codes.

Now the condition (A1) leads to lower bounds on «(C,) and a(Cg) that
depend solely on d and h and can be resolved in turn for r and R. The condition
(A2) gives uppers bound, but it can be satisfied easily (and, in the beginning,
locally) by rotating a point towards its closest neighbour until the distance
between them becomes $;,,;,(d). This means that for every spherical code, both



Baichev, Boyvalenkov, Delchev, Papazov 9

conditions can be satisfied by choosing suitable values for 7 and R and moving
some of the code points.

The problem for finding codes with large cardinalities and good parameters
is non-trivial one even in three dimensions and has not been a subject of system-
atical investigation. There exist however, large series of codes with icosahedral
symmetry, obtained and described (amongst other classes of spherical codes)
by Hardin, Sloane and Smith in [8]. We choose this series as a source for the
initial codes and after modifying them so that they satisfy (A1) and (A2) check
for pairs such that the condition (A3) holds. For example, for A = 20 and
d = 8, one construction with 650 points on the outer and 480 points on the
inner sphere was found to be good for our purposes.

4 On Problem 2

Since the problem asks for optimization on two very different criteria, we based
our algorithm on step-by-step approach avoiding the traditional idea of linear
programming with only one condition in mind. For suitable starting config-
uration (a fixed spherical code C) we implement an algorithm, based on the
following steps:

(1) We start with all points belonging to C;. While M (Cy) > M(Cs) we
take points from C7 and move them into C5 one by one, each time choosing the
point which minimizes s(Cs);

(2) We choose a pair of points (y,z2), y € C1, z € C for which |} - = —
> wcc, —2y + 22| is minimal i.e. if we 'swap’ the two points in the codes, the
sum will decrease the most;

(3) It is obvious that all points lie on the convex hull. Again we choose
the pair of points, one from each code, which when ’swapped’ will decrease the
number of walls whose vertices lie in only one of the codes the most;

(4) We repeat steps (2) and (3) until satisfiable construction is reached.

In all practical cases two or less repetitions of (3) and (4) yielded virtually
equal sums and small number of faces, whose vertices belong entirely in one of
the codes.
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An algorithm for classification of optimal
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TSONKA BAICHEVA tsonka@math.bas.bg

SVETLANA TOPALOVA svetlana@math.bas.bg

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
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Abstract. We describe an algorithm for classification of optimal (v, k, A, 1) optical
orthogonal codes (OOC) up to multiplier equivalence.

1 Introduction

For the basic concepts and notations concerning optical orthogonal codes and
related designs we follow [1], [2], and [3]. We denote by Z, the ring of integers
modulo v.

A (v, k, Mg, Ac) optical orthogonal code (OOC) can be defined as a collection
C = {Cy,...,Cs} of k-subsets (codeword-sets) of Z, such that any two distinct
translates of a codeword-set share at most A, elements while any two translates
of two distinct codeword-sets share at most \. elements:

1IN (Ci4+1)| <Ay 1<i<s, 1<t<v-—1 (1)
ICiN(Cj+1)| <A, 1<i<j<s 0<t<wv-1 (2)

Condition (1) is called the auto-correlation property and (2) the cross-correlation
property. The size of C is the number s of its codeword-sets. OOCs with the
maximum possible size for definite parameters are called optimal and different
bounds on their size have been derived.

Consider a codeword-set C' = {¢1,¢a,...,cx}t. Denote by A'C' the multiset
of the values of the differences ¢; —cj, i # j, t,7 =1, 2, ..., k. The autocorre-
lation property means that at most A, differences are the same. Denote by AC
the underlying set of A’C. The type of C' is the number of elements of AC, i.e.
the number of different values of its differences. If A\, = 1 the cross-correlation
property means that AC; [ AC2 = 0 for two codeword-sets C; and Cy of the
(v,k, Ag, 1) OOC.

Let V = {P;};_, be a finite set of points, and B = { B, };’.:1 a finite collection
of k-element subsets of V, called blocks. D = (V,B) is a design (partial design)
with parameters t-(v,k,\) if any ¢t-subset of V' is contained in exactly (at most)
A blocks of B. Partial designs are also known as packings [2] or packing designs.
We call them partial designs following [3].
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A t-(v,k,\) (partial) design is cyclic if it has an automorphism a permuting
its points in one cycle, and it is strictly cyclic (more precisely it can be also
called strictly a-cyclic) if each block orbit under this automorphism (a-orbit)
is of length v (no short orbits).

An a-resolution of a t-(v,k,\) (partial) design is a partition of its blocks
to parallel classes, such that each point is in exactly a blocks of each parallel
class. A (partial) design is a-resolvable if it has at least one a-resolution. A
strictly a-cyclic ¢-(v,k,\) (partial) design is k-resolvable because each a-orbit
is a parallel class. We will call this k-resolution a-orbit k-resolution.

From the (v,k, Aq, \c) OOC C one can construct an a-cyclic k-resolution
of a t-(v,k,\) (partial) design R, each parallel class of which has as blocks a
codeword-set of C and its translates. A (v, k, Ay, \c) OOC can be obtained from
Rc by taking as codeword-sets one block of each parallel class. In particular,
the (partial) design related to a (v, k, Aq, 1) OOC is a (partial) 2-(v,k,\,) design
and at the same time a (partial) (A, + 1)-(v,k,1) design. This design has the
additional property that any two blocks of one and the same a-orbit have at
most A, common points, while two blocks of different a-orbits have at most 1
common point (Figure 1).

Figure 1: OOCs and partial designs

a) Optimal perfect (20,4,2,1) OOC C

codeword-sets differences distinct differences type

{0,1,5,6} 119515416614515119 1456141516 19 8

{0,2,9,12} 2189117131281010317 | 2378910111213 1718 | 11

b) Related cyclic 4-resolution of a partial 2-(20,4,2) design
0123456 78 910111213141516171819| 0 1 2 3 4 5 6 7 8 91011121314 1516 17 18 19
oj1T000000O0O000O0O0OO0OO11O0O0O0OI1|{1000000010O01O0OO0OOOOOT1I0
i1fr100000O0OO0O0OO0O0OOOO11O0OOCO1LOOCODODOODOL OO1O0OO0OO0OUOOGOOQOT1
2011 00000OO0OO0O0O0OO0OOOO0OO11O0O0Of1T01000DO0O0ODOO11TO0OO0OT11TO0®O0OOOOD®
3/l00110000O00O0O0O0OO0OOO0OO0OOO11L1O0(0O1010000OD0OO0O0OOC11TO0UOT11TO0UO0OOQO0OOQO0ODQ
4/0001100000O0OO0O0ODO0OO0OOBOO111(00101000OD0OO0OOOT11TOOQO0OT11TO0OTQO0OOQO0ODGO
5/(1000110000O0O0O0OOO0O0O0OOOOO1f(0O000101000O0OBGOOT11TO0OQO0OT11TO0OQO0OTDd
6/1100011000O0O0OO0ODO0OOOOOOBGO0OO0OOO110100OO0OOLOOOT11TO0UOT11TO0OQO
7|01 10001100O0OO0ODO0OOOOOOLOOB|OOOODO1LIO1O0OOOOOOO1TO0OTI11TO0
8,001 10001100O0O0OO0ODO0O0O0ODO0ODO0O0DOOBOO0OODOOO11O010OOGOOOOTTO0O01
9/]00011000110O0O0O0O0O0O0O0OLO0O0DO0O0ODOB100000DO0O101 0O0OOOOOOOT11TO0OD0O
wloooo11r0001100O0O0OBO0O0O0O0OBO0ODO0O010O0ODBO0OOO0O11O0O1O0UOOOOOOOT1TO0
1{0000011000110O0O0OO0O0O0O0OD0LO0O0O0OL00O0D1O0D0ODODODBOO1IO0T1TO0O0OO0OOODOO® 0?1
12f]0 00000110001 10O0O0O0O0O0ODLO0O0O01001000OD0ODO0ODO0ODL1O01O0O0O0OTGO0OLO® OO
3l 0000000O1100O0O110O0O0O0O0O0DO0O0100100D0D0O0ODO0O01O0O1O0UOSQO0OQO0OTQ OO
40000000011 0O0O0O011O0O0O0O0O0O0O00100100D0DO0ODO0OO0O11O01O0O0O0OTVO0OO0O
150000000001 1000110000[/0001001000000101000 0
1600000000001 100011000[00001001000000710100 0
17/]0 00000000001 10001100[000001001000000°71010 0
8 o0oo0oo0oo0oo00000OO0OO0O1100O011O0|]000O00O0O0O01O0O01O0O0OOOLDO0OOTI11TO0T1TO0
9|0 o00OO0OO0O0ODOODOODODOL11O0O0OOBL11|]00000ODO0O0O0OD1T0O0O1O0O0OOOOODOT1TO0T1

Circulant matrices of order v can be mapped to other circulant matrices
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of order v by all permutations, which are automorphisms of Z,. In particular,
such an automorphism 1; acts as 1;(a) = ia, where a,i € Z, and i is a primitive
root modulo v (see for instance [4, end of section 3.8.]). Multiplier equivalence
is defined for cyclic combinatorial structures.

Two (v, k, Ag, Ac) optical orthogonal codes are multiplier equivalent if they
can be mapped to one another by an automorphism of Z, and (or) replacement
of codeword-sets by some of their translates.

2 Classification algorithm

For the needs of our construction we relate to each codeword-set C = {c;, ¢2, 3,
¢4} a codeword-set vector C = (c1,c2,c3,¢q4) such that ¢; < ca < c3 < ¢yg. If we
replace a codeword-set C' € C with a translate C'+t € C, we obtain an equivalent
OOC. That is why without loss of generality we assume that each codeword-
set vector of the optimal (v,4,2,1) OOCs is lexicographically smaller than the
codeword-set vectors of its translates. This obviously means that ¢; = 0.

Let C_"l and 62 be two codeword-set vectors, which are related to codeword-
sets C_l, and Cs. Later when we say that C, is mapped by the permutation
¢ to Cy and write ¢(C1) = C2, we mean that ¢(C1) = C4, Cy is the smallest
translate of C%, and 62 is the vector related to Cy. For that reason it is possible
for two different permutations to map a codeword-set vector to one and the same
codeword-set vector.

Let o, 1, -..@m be the automorphisms of Z,*. We first find and save them
in an array of m elements. We also create a two-dimensional array A with m?
permutations such that applying first ¢; and then ¢; is equivalent to applying
PA5)

We create an array L of all k-dimensional vectors over Z, which might
become codeword-set vectors, i.e. which are smaller than all their translates.
L is sorted with respect to the codeword-set type. It begins with the vectors of
the smallest possible type, and ends with those of biggest type. We construct
the vectors of each type in lexicographic order. To each such vector we apply
the permutations ¢;,7 = 1,2,...m — 1. If some of them maps it to a smaller
vector, we do not add this vector since it is already somewhere in the array. If
we add the current vector C' to the list, we also add after it the m — 1 vectors
to which C is mapped by ¢;,i =1,2,...m — 1. This way we obtain the array L
whose elements L,,x = 0,1, ..., f are all the possible codeword-set vectors and
are related in the following way:

e if z =0 (mod m), then L, cannot be mapped to any previous vector

e if z =i (mod m), then L, is obtained from L,_; by the permutation ¢;
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e when ¢; is applied to L, (x = a (mod m),x = b+ a ), the codeword-set
Ly A(ay) 1s obtained

This organization of L is very useful, but as it was shown in Example 2,
some codeword-sets might appear more than once in L. That is why we also
keep for each possible codeword-set vector L, the smallest number a, such that
L, =L, and y = a (mod m). We keep this a in place of the first codeword-set
element ¢, which is always 0. This way for each  we can directly obtain the
smallest y, such that L, is obtained by applying on L, a given permutation
from the automorphism group of Z,*.

We construct the OOC choosing the codeword-sets among the elements of L
by backtrack search until we find the s codeword-sets L, , Ly, ..., Ly,. Without
loss of generality we assume that 1 = 0 (mod m). We actually only work with
the numbers z; of the codeword-sets in L, which we obtain in an array, such
that each element is greater than the previous one, i.e. 7 < 22 < ... < .
Suppose we have already added r numbers. Let T be the type of the r-th
codeword-set, and let d be the number of distinct differences covered by the r
elements. We only look for optimal codes, i.e. codes with s elements. The type
of the remaining codeword-sets is at least as big as that of the r-th one. That is
why d+ (s —7)T < v—1. If this does not hold, we look for the next possibility
for the r — 1-st codeword-set.

We choose the 7 + 1-st codeword-set L, ,, (2,41 > ;) to have no common
differences with the previous r ones. When we add the r + 1-st codeword-
set number z,,1, we find the r + 1 numbers obtained by applying ¢;,i =
1,2,...,m to the current partial solution and sort them. If the obtained array
is lexicographically smaller than the current one, it means that an equivalent
sub-code with r 4+ 1 codeword-sets has already been considered, and we look for
the next possibility for the r + 1-st codeword-set.
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New results on m,(2,¢q)!
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Abstract. An (n,r)-arc is a set of n points of a projective plane such that some r,
but no r+1 of them, are collinear. The maximum size of an (n,r)-arc in PG(2,q) is
denoted by m.,(2,¢). In this paper some new results on m.(2, q), obtained in 2010
year, are presented.

1 Introduction

Let GF(q) denote the Galois field of ¢ elements and V(3, q) be the vector
space of row vectors of length three with entries in GF(q). Let PG(2, q) be
the corresponding projective plane. The points (x1,x2,x3) of PG(2,q) are the
1-dimensional subspaces of V(3,q). Subspaces of dimension two are called lines.
The number of points and the number of lines in PG(2, q) is ¢* + ¢ + 1. There
are ¢ + 1 points on every line and g + 1 lines through every point.

Definition 1.1 An (n,r)-arc is a set of n points of a projective plane such
that some r, but no r+1 of them, are collinear.

The maximum size of an (n,r)-arc in PG(2, q) is denoted by m,(2, q).

Definition 1.2 Let M be a set of points in any plane. An i-secant is a line
meeting M in exactly i points. Define 1; as the number of i-secants to a set M.

In terms of 7; the definition of an (n,r)-arc becomes

Definition 1.3 An (n,r)-arc is a set of n points of a projective plane for
which 7, >0 for i<r, 7.>0 and 7,=0 when i>r.

Definition 1.4 An (I,t)-blocking set S in PG(2, q) is a set of | points such
that every line of PG(2, q) intersects S in at least t points, and there is a line
intersecting S in exactly t points.

! This work was partially supported by the Ministry of Education and Science under con-
tract in TU-Gabrovo.
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Note that an (n,r)-arc is the complement of a (¢? +¢-+1—n, ¢+ 1 —7)-blocking
set in a projective plane and conversely.

The following two theorems are proved in [1] and [2] respectively.

Theorem 1.5 Let K be an (n,r)-arc in PG(2, q) where q is prime.
1. Ifr < (q¢+1)/2 then m.(2,q) < (r—1)g + 1.

2. If r > (¢ +3)/2 then my(2,q) < (r — )g+r — (¢+1)/2.

Theorem 1.6 Let K be an (n,r)-arc in PG(2, q) withr > (¢+3)/2 and ¢ < 29
18 prime. Then
m(2,q) < (r =g +7r—(¢+3)/2.

In 1947 year Bose [8] proved that
m2(2,q) =q+1  for ¢ - odd

ma(2,q) =q+2  for q - even
From the results of Barlotti [9] and Ball [1] it follows that

me(2,q) = (r—1)g+1
for ¢ odd prime and

r=(q+1)/2, r=(q¢+3)/2

A survey of (n,r)-arcs with the best known results was presented in [3]. In the
years 2004-2005 many improvements were obtained in [4], [5] and [6]. Summa-
rizing these results, Ball and Hirschfeld [7] presented a new table with bounds
on my(2,q) for ¢ < 19. As we can see from these tables the exact values of

m.(2,q) are known only for ¢ <9 (see [3], [7]).

Values of m,(2,q)

r\qg 34|55 | 7] 8|9
416| 6 | 8 1010
9111|1515 |17
16 | 22 | 28 | 28
29 | 33 | 37
36 | 42 | 48
49 | 55
65

O~ O UL i W N
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2 New arcs in PG(2, 11), PG(2, 17), PG(2, 19) and
PG(2, 23)

A (79,6) arc in PG(2,17) and a (126,8) arc in PG(2,19) are given in [10]. A
(95,7)-arc, a (183,12)-arc, a (205, 13)-arc in PG(2,17) and a (243, 14)-arc and
a (264, 15)-arc in PG(2,19) have been constructed by the authors. In the middle
of 2010 year T. Aaron Gulliver constructed an optimal (78,8) arc in PG(2,11).

Recently arcs with parameters (36,3), (79,5), (102,6), 124,7), (146,8), (169,9),
(192,10), (223,11) and (415,19) in PG(2,23) have been constructed by A. Kohn-
ert [10]. The rest of the presented arcs in PG(2,23) are constructed in [11], [12].

The next table is an updated version of the table from [7] and has a new
column.

Bounds on m,(2,q)

r\q 11 13 16 17 19 23
2 12 14 18 18 20 24
3 21 23 28..33 28..35 31..39 36..47
4| 32.34 38..40 52 48..52 52..58 58..70
5| 43..45 49..53 65 61..69 68..77 79..93
6 56 64..66 78..82 79..86 86..96 | 102..116
7 67 79 93..97 95..103 | 105..115 | 124..139
8 78 92 120 114..120 | 126..134 | 146..162
91 89.90 105 128..131 137 147..153 | 169..185
10 | 100..102 | 118..119 | 142..148 154 172 192..208
11 132..133 | 159..164 | 166..171 191 223..231
12 145..147 | 180..181 | 183..189 | 204..210 254
13 195..199 | 205..207 | 225..230 277
14 210..214 | 221..225 | 243..250 | 291..300
15 231 239..243 | 264..270 | 313..324
16 256..261 | 285..290 | 335..348
17 305..310 | 361..372
18 324..330 | 385..396
19 415..420
20 437..444
21 461..468
22 484..492
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Abstract. In this talk we give two constructions of Zs-linear codes that contain
as a subcode a copy of some simplex code over Zg4.

1 Introduction

We give two constructions of Z4-linear codes that contain as a subcode a copy of
some simplex code over Z4. The first construction generalizes a recent result by
Kiermaier and Zwanzger [1] to codes of arbitrary dimension. We provide a geo-
metric interpretation of their construction which is then extended to projective
Hjelmslev spaces of arbitrary dimension.

Our second construction exploits the possibility of adding two nonfree rows
to the generator matrix of some simplex code over Z4. Using the second con-
struction we produce a Zy-linear code of length 30, shape 4322 and minimum
Lee distance 28. The Gray-image of this code is a non-linear binary (60, 28, 28)-
code which is better than any binary linear code of length 60 and dimension
5.

Let IT = PHG(Z}). Fix a hyperplane H, X4 = 0 say, and a point which is
not a neighbor to H, x = (0,...,1) say. Let further K be a projective arc in H
with spectrum

{Aa | a = (ao,al,ag)Ng}.

Denote by B the set of types a € N3 for which there is a subspace of codimension
1in H of type a, i.e.
B={acN}| Aa>0}.

Define a new arc & on the points of II by taking:

- the point z

- the points of K itself

- for each point z in H but not on RK its neighbor on the (unique) line
connecting z with x.
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Formally,

K={z}URU{y|ye[H|\H,ycxzzc H\K. (1)

Theorem 1.1 Let ] be an arc in PHG(Z%) obtained from & via (1). Then

|§| = 2k=2(2k=1 _ 1) + 1 and the hyperplanes that are not neighbours of x have
one of the following types:

(i) (1,2*72(2"" = 1) — |8, [8]),
(i3) (1,2872(2F=2 — 1) + ag — a1 — a9, 2%* —ag + a1 + ag,
(i3i) (22k=4 2k=3(2k=2 1) 2k=3(2F=2 — 1) + 1),
(iv) 22F=4 4 1,2873(2872 — 1) + a1 — ag,,2873(28 2 — 1) — a1 + ag).

where (ag, a1, a2) € B.

Corollary 1.2 The Zg4-linear code C obtained from the arc R has parameters
N =222k — 1) 41,|C| = 2.

Moreover, its nonzero codewords have the following types:

o (0,2"72(2" " —1) — 8| + 1,]8]),

0,2872(28=2 — 1) + ag — a1 — ag + 1,224 —ag + ay + as),

(
° (22]674’ 2k73(2k72 _ 1)7 2k73(2k72 _ 1) 4 1)7
(0, 22k—4, 2k—2(2k—2 o 1) + 1)’

(

22 2P — ) far —ap +1,2573(252 — 1) — a1 + aa).

The second construction aloows the extension of the generator matrix by
more than one free row.

Let IT = PHG(Z%) and fix two hyperplanes H; and Hs in IT which are not
neighbors. Set T'= Hy N Hy. Clearly T = PHG(Z5~?). Fix points x; € H; and
x9 € Hy with x1, 29 ¢T.

Choose two projective arcs K1 and K9 in T and denote by Ky the complement
of their symmetric difference

Ro =T\ (R1LRs).

Now we define an arc & in II by repeating the construction from above in
each of the hyperplanes H; and Ho. We define £ to contain the following points:
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by taking:

- the points z; and xo;

- the points of £1 N RKo;

- if y € R \ R we take the point z; which is the (unique) neighbour of y on
the line z1y;

- if y € K9\ Ry we take the point zo which is the (unique) neighbour of y on
the line zoy;

- if y € &1 N Ry we take the common point of the lines x129 and xsz;.

Let us denote by x¢ one of the two points on x1z9 that are not neighbours
to any of w1, x2. Denote further by Hy the hyperplane generated by T' nad z.
Now it is clear that the construction of the arc K consists in repeating three
times the construction from 1 to each of the hyperplanes H; i = 0, 1,22 where
the role of z is palyed by x;, and the role of the arc & — by K;. Formally,

K = {21,225} U(R1 N Ky) U
{z|2z€[T]\T,z € x1y,y € 81 \ K2} U
{z|2€[T]\T,z € zoy,y € R \ K1} U
{zlz€ [T\ T,z €xoy,y € T\ (R1UR)}. (2)
As in Theorem 1.1 the types of the hyperplanes of R can be computed effec-
tively. We will be interested in those hyperplanes, which give rise to essentially

different types of codewords. So, we shall compute the types of hyperplanes
that:

- contain both x; and z3, or
- are not a neighbour to the line z1xs.

Assume the spectrum of the arc &, i =0,1,2, is
A = {Ag) | a = (ap,a1,as) € N3}

Denote by B, B and B® the sets of possible types of hyperplanes with
respect to the arcs 89, 1) and K@), respectively;

BY = {a = (ag,a1,a2) | AP >0}, i=0,1,2.

Theorem 1.3 Let & be an arc in PHG(Z%) obtained from & via (2). Then

|§| = 2F=3(2F=2 _ 1) + 2 and the hyperplanes that are not neighbours of x have
one of the following types:

(i) (1L,2"72(2F2 = 1) — R[] + 1), i = 1,2,
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(i) (2,2573(22 1) — |Rol, [8i]), i = 1,2,
(iii) (1,26-3(28=3 — 1) 40’ — al? — af) 2266 — o) 4 o) 1 o) 1), i = 1,2,
(iv) (2,28-3(2k3 —1)+al”) —a(” —al? 226 _ o0 1 o0 4 o0 1 1) i =12,
(v) (2256 ok—4(2k=3 _ 1) ok—4(2k=3 _ 1) | 9),
(vi) (2276 1 1, 26=1(2k=3 _ 1) 4 a{) — o) 2k=1(2k=3 _ 1) — a{) 4 o) 4 1),
i=1,2,

(vii) (2276 4 1,26=4(26=3 — 1) 4 a{” — o) 2h=4(263 — 1) — o i 4+ 1).

where (a(()i),agi), ag)) € B,
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Abstract.We investigate CRC codes generated by polynomials of degree r = 24
and minimum distance 4. Historically, standardized polynomials of degree r were
chosen with a parity control check (x4 1) polynomial multiplied by primitive poly-
nomial of degree » — 1. However, this appear to be optimal strategy only for CRC
codes with codelength close to 2"~' — 1. Such standard is used also in the HARQ
scheme of the LTE standard [3]. The newly described method finds easily polyno-
mials that perform better with respect to the function of probability of undetected
€error.

1 Introduction

Let C be a binary [n., k¢, 4] code generated by polynomial g(z), So, deg(g) =
r = n. — k. and n. is the order of g(z).

Each codeword ¢(z) can be represented as multiplication of a(z)g(x), where
deg(a) <m.—r.

In a binary symmetric channel (BSC) function of undetected error proba-
bility can be characterized with

P(C,e) = Z Aie' (1 — )"
i=1

where ¢ is the channel error rate and A is the distance distribution of the code
C.

So, not only the minimum distance is important to characterize certain
CRC code with respect to probability of undetected error, but also number of
minimum weight words. This characteristic is important when ¢ tends to zero.

Lets denote the latest with A4, _m(g) for a shortened in m positions [n. —
m, k. —m,4] CRC code.

2 Classes of polynomials

Since case r = 16 is covered in [4] we are interested to see how such CRC
codes behave for other r and we study » = 24 and in particular, we compare
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these polynomials to the LTE standard. The LTE standard [3] defines two
polynomials, namely:

ga@) =2 2B B 42 e e 20 T S St

and
g(x) = + 2B a8 2P+ 1

First of these polynomials is used only for codelength 6120. They have
A(ga)ae120 = 56,416,496 and A(gp)4,6120 = 68,018, 112 respectively and order
8388607. Error correction schemes in LTE are described extensively in [1] and
[2].

If two polynomials g(x) and f(x) can be factorized on equal number k of irre-
ducible polynomials g1 (), ..., gx(z) and fi(x), ..., fx(x) such that deg(g;(z)) =
deg(fi(x)) for i = 1,...,k ord(g;(x)) = ord(f;(z)) for i = 1,... k we will say
that they belong to one class.

All polynomials from one class have the same order and generate equivalent
cyclic codes with the same A4(g). To determine the number of minimum weight
words of extended Hamming code we can refer to

Theorem ([4],Th9) Let C be a binary [n. — r, k., 4] code generated by the
polynomial (x + 1)g(x) of degree r and order n. = 2"~! — 1. The following
equability holds:

Agne—s(9) = (ne — 3)[(ne — 4s)(ne — 1) + 6s(s — 1)]/24

7j—1
- (s = m)(Qmj(9) = > Qmyja(9))
j =1

where:

Qm,j(g) is 1 if g(x) divides x,, + x; + 1, else 0 and Qi (g) is 1 if g(x)
divides x,, + x; + x; + 1, else 0.

According to this theorem, shortened in s positions Hamming codes gen-
erated by primitive polynomials of degree r — 1 and multiplied by x + 1 will
have similar values of A;. A subject of further study is to quantify meaning of
’similar’, but there are no big differences in values of A ;.

Unfortunately, we do not have formulas for A4 ¢ for an arbitrary polynomial

g(x).
3 Method of investigation

We calculate the order and factorization of all polynomials of degree r = 24 ex-
cluding reciprocal ones, i.e. x?*g(1/x). For each order n, and factorization (we
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use hash function to map different factorizations), we select one polynomial h
representing the class and we calculate the minimum distance d of correspond-
ing CRC code. If d = 3, we skip this class of polynomials. If d = 4 we calculate
the number of minimum weight words A4 6120(h) and select polynomial classes
with polynomial representative with order bigger than 6120. For the calcula-
tion of A4 s(g) we use distance distrubution of the dual code calculated with
standard Gray method and then we apply McWillams transformation.

For the first three classes with the minimum value of Aj—4 6120 (in order
to compare with g4) we perform calculations on all their members and in that
way we find the best polynomial that generates minimum Ag—4 6120

For specific codelenghts we may limit our search only to the polynomials
with odd weight. Since we do not provide mathematical proof at this fact, we
do the search on all polynomials.

4 Results and Dependencies

In the tables below we give our results for studied degrees. All polynomials are
preented in hexadecimal notation, for example polynomial 224 + 26 4+ 25 + 2% +
23 + 1 is denoted by 0x1000079.

Polynomial notation order Age120
0x1864CFB (standard,g4) | 2%° — 1 | 56,416,496
0x1800063 (standard,gg) | 223 —1 | 68,018,112

0x114855B 38227 | 24,989,800
0x17A481F 12291 | 25,013,640
0x14AC147 19065 | 25,463,304

Table 1: Comparison of the minimum weight words of standartized polynomilals
and new proposals.

We notice that all optimal polynomials have odd weight and they perform
significantly better than the standard polynomial.

5 Conclusions

Here we present a method which improves standard LTE polynomials signifi-
cantly for the target codelenght. We group polynomials in classes and we select
ones with d = 4 and minimum value of A4, for s = 6120. Our results are sig-
nificantly better compare to standartized polynomials with respect to function
of undetected error probability for the most useful case when & tends to zero.
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Although the whole algorithm is NP-complete, due to very limited number of
investigated polynomials, it provide good guideline how CRC polynomial can
be selected for specific codelength.
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Abstract. In this talk, we prove the nonexistence of several hypothetical quater-
nary Griesmer codes of dimension five using tools from finite geometries.

The exact value of n4(k, d) has been found for k£ < 4 for all d [2]. According
to [2] there exist 114 values of d for which ny(k,d) is unknown. In the mean-
time, many new results appeared or were announced without proof.

In this talk, we prove the nonexistence of several hypothetical quaternary
Griesmer codes of dimension five. The nonexistence of Griesmer codes for
d = 349,...,352, announced earlier in [1], used a classification arcs with param-
eters (118,30;3,4), that turned out to be incomplete. We present a geometric
characterization of the (118, 30)-arcs from which we deduce the nonexistence of
quaternary five-dimensional Griesmer codes with d = 464,465,467, .. .,470.

Further, we prove the nonexistence of Griesmer codes with £ = 5, ¢ = 4
and d = 297,298. The structure of these hypothetical codes is related in a nice
way to caps in PG(3,4) and PG(4,4). Their parameters admit an interesting
generalization to arbitrary finite fields.

Our approach to the problem of finding the exact value of n4(5,d) is a geo-
metric one. All problems are translated in a geometric language and are solved
using tools from finite geometries.
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Abstract. A spread is a set of lines of PG(d, q), which partition the point set. A
parallelism is a partition of the set of lines by spreads. Results on parallelisms in
PG(3, q) obtained by now are considered by Johnson [8]. He points out many open
questions in this area and regularity of parallelisms is among them. We investigate
the obtained by Topalova and Zhelezova [15] 482 non isomorphic parallelisms with
automorphisms of order 7 and establish that there are no regular parallelisms among
them.

1 Introduction

For the basic concepts and notations concerning projective spaces, spreads and
parallelisms, refer, for instance, to [6], [8], [9] or [14].

Definition 1.1 A t-spread of PG(d,q) is a set S of t-dimentional subspaces of
PG(d,q) which partitions the point set.

That is, every point of PG(d,q) is contained in exactly one element of S.

Definition 1.2 A t-parallelism is a partition of the set of t-dimentional sub-
spaces by t-spreads.

There can be t-spreads and t-parallelisms iff (¢ + 1)|(d + 1) [14].

Definition 1.3 A t-spread S is geometric if for each S € S and L € L, either
S CLorSNL =@, where L is the set of (2t + 1)-dimensional subspaces of
PG(d,q) spanned by pairs of elements of S.

Definition 1.4 A t-regulus of PG(2t + 1,q) is a set R of ¢ + 1 mutually skew
t-dimentional subspaces such that any line intersecting three elements of R in-
tersects all elements of R.

Definition 1.5 A t-spread S in PG(2t + 1,q) is regular if it is geometric and

for any three elements of S, the t-regulus determined by them is also contained
mnS.

Definition 1.6 A t-spread is called aregular [0] if it contains no t-requlus and
subregular if contains some t-reqguli.
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The number of the t-reguli in a t-spread shows its index.

According to its t-spreads a t-parallelism can be regular - if all its t-spreads
are regular, subregular and aregular (if all its ¢-spreads are aregular).

The correspondence to translation planes [6] was one of the main reasons
for the consideration of t-spreads and t-parallelisms. Some t-paralelisms could
lead to a projective plane whose order is not a prime power [2], [8].

There can be 1-spreads and 1-parallelisms in PG(3,4). Next in this paper
we say a spread and a parallelism instead of 1-spread and 1-parallelism.

All parallelisms of PG(3,2) are known and they are regular. Johnson [11]
showed that there are no regular parallelisms of PG(3,3) but that there are
many parallelisms consisting entirely of subregular spreads of index one.

There are many construction of parallelisms in PG(3,q) due to plenty of
authors. The parallelisms in PG(3,q), ¢ > 2 constructed by Beutelspacher [1],
Denniston [3], [4] and Hirschfeld [9] are subregular with one regular spread,
while these constructed by Johnson in [7] are examples of aregular parallelisms.
A parallelism of PG(3,8) discovered by Denniston [5] is regular. In [12], Prince
discovers two regular parallelisms of PG(3,5). The results for regular paral-
lelisms of PG(3,q) for ¢ = 2,5, 8 are generalized for ¢ = 2 (mod 3) by Penttila
and Williams in [10].

Before the constructed in [15] parallelisms of PG(3,4) with automorphisms
of order 7 ¢ = 4 was the smallest ¢, for which no automorphism classification
of parallelisms was done. In this work we investigate these parallelisms for
regularity and establish that there are no regular ones among them.

2 Investigation and results

There are 85 points and 357 lines in PG(3,4), each line is incident with 5 points.
A spread has 17 lines which partition the point set and a parallelism has 21
spreads. A regulus has 5 lines and a spread has to have (137) / (g) = 68 reguli to
be regular.

To construct PG(3,4) we use GF(4) with generating polynomial 22 = x +
1. The points of PG(3,4) are then all 4-dimensional vectors (vi,va,vs,v4)
over GF'(4) such that if vy = 0 for all k& > i then v; = 1. We sort these 85
vectors in ascending lexicographic order and then assign them numbers such
that (1,0,0,0) is number 1, and (3, 3,3, 1) number 85.

Then we take the 2-dimentional subspaces of the vector space to be the
lines of PG(3,4). We sort the 357 lines in lexicographic order defined on the
numbers of the points they contain and assign to each line a number according
to this order.

To investigate parallelisms of PG(3,4) with automorphisms of order 7 we
follow the next three steps: at first we construct the reguli, then we investigate
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the spreads with automorphisms of order 7 according to the reguli they contain
and at the end we determine the type of the parallelisms with automorphisms
of order 7 according to the type of their spreads.

To construct the reguli we consider each triple of disjoint lines of PG(3,4).
Let’s denote a regulus by R and its elements (lines of PG(3,4)) by R;, 1 <i <5.
For each triple of lines Ry, Ro and R3, R1 N RaN R3 = 0 we look for appropriate
R, and Rj such that all these 5 lines form a regulus. For each point P; € Ry,
1 < 5 <5 we find out the line through it and Ro and Rs. Thus for each point
P; € Ry we obtain two additional points, which are not in Ry, Ry or R3. In
general for all 5 points of Ry we have as result 10 points. These determine the
last two lines of the regulus - R4 and Rs. Consider for example the triple of
lines (presented with their points) R; = {1,2,3,4,5}, Ry = {6,22, 38,54, 70},
Rs = {13,37,46,60,71}. Using the above mentioned lexicographic order of
lines Ry = Ly, Ry = Lyp2 and R3 = Logg. At first we consider Py = 1 € L.
The line trough Py, Lige and Logg is Lig. The extra points, which are not in
the considered triple of lines are points 72 and 73 here. Next we find out the
line through P, = 2 € L; and L1g2 and Loy which is Lgg and etc. As a result
we obtain a regulus R written by its lines - L1, L1g2, La2g, Los1 and Lssg.

We arrange the lines of the spreads which we want to investigate in lexico-
graphic order. Therefore in order to avoid duplication in the search we consider
only reguli whose 5 lines are in lexicographic order. In this manner we obtain
274176 reguli of PG(3,4).

Next we consider the spreads of PG(3,4) with automorphisms of order
7. Any three mutually disjoint lines of PG(3,4) determine a unique regulus
containing them. For each triple of the lines of a spread we check if the regulus
determined by it is in the spread. If this is established we count the regulus.

The search on the spread lines stops when all triples are considered. Then
we check the number of the reguli in the spread and if it is less than 68 the
spread is not regular.

Our investigation on the spreads of PG(3,4) with automorphisms of order
7 shows that there are no regular ones among them. Therefore we can conclude
that there are no regular parallelisms among the constructed in [15].
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New [52, 26, 10] self-dual codes
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Abstract. Using a method for constructing self-dual codes via an automorphism of
odd prime order, we classify up to equivalence all optimal binary self-dual [52, 26, 10]
codes having an automorphism of type 3 — (14,10). We study also codes with
automorphism of type 3 — (16,4). Some of the obtained codes have new values
£ =38,9, and 12 for the parameter in their weight enumerator.

1 Introduction and construction method

A linear [n, k| code C'is a k-dimensional subspace of the vector space F,, where
F, is the finite field of ¢ elements. The weight of a codeword v € C is the
number of the non-zero coordinates of v, denoted by wt(v). The minimum
weight d of C is the smallest weight among all its non-zero codewords, and C'
is called an [n, k, d]; code. A matrix whose rows form a basis of C' is called a

generator matriz of this code. For every u = (u1,...,u,),v = (vi,...,v,) € F},
n

w.v = Y uv; defines the inner product in Fy. The dual code of C is ct =
i=1

{veFy |uv=0,YuecC} If C=Ct, wesay that C is self-dual. The weight

enumerator W (y) of a code C is defined as W (y) = Y1, A;y’, where A, is the

number of codewords of weight ¢ in C.

Two binary codes are called equivalent if one can be obtained from the other
by a permutation of coordinates. The permutation o € S, is an automorphism
of C, if C = o(C) and the set of all automorphisms of C' forms a group called
the automorphism group of C (denoted by Aut(C)).

Let C' be a binary self-dual code of length n with an automorphism o of
prime order p > 3 with exactly ¢ independent p-cycles and f = n — ¢p fixed
points in its decomposition. We may assume that o = (1,2,--- ,p)(p+ 1,p +
2, 2p)---(plc—= 1)+ 1,p(c — 1) + 2,--- ,pc), and shortly say that o is of
type p — (c, f). Let Qy, ..., Q. are the cycles of o, and Qcq1,...,Qcyf — the
fixed points. Let F,(C) = {v € C | vo = v}, E,(C) = {v € C | wt(v|) =
O(mod 2),i =1,--- ,c+ f}, where v|€; is the restriction of v on €;.

Theorem 1.1 [2] C = F,(C) ® E,(C), dim(Fy) = C;f, dim(E,) = C(p2—1).

! This work was supported from section “Research” under contract RD-05-157/25.02.2011
with Shumen University
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Let m: F,(C) — IE‘;HC be the projection map where if v € F,,(C), (vm); = v;
for some j € Q;,1=1,2,...,c+ f.

Denote by E,(C)* the code E,(C) with the last f coordinates deleted. So
E,(C)* is a self-orthogonal binary code of length pc. For v in E,(C)* we let
v|Q; = (vo,v1,- - ,vp—1) correspond to the polynomial vg+v1x+vp_12P~ ! from
P, where P is the set of even-weight polynomials in Fa[z]/(aP — 1). Thus we
obtain the map ¢ : E,(C)* — P¢, where P is the set of even-weight polynomials
in Fa[z]/(aP —1). P is a cyclic code of length p with generator polynomial z—1.

Theorem 1.2 [7] A binary [n,n/2] code C with an automorphism o is self-
dual if and only if the following two conditions hold:
(1) Cr = m(F5(C)) is a binary self-dual code of length ¢+ f,

(i1) for every two vectors u,v € C, = p(E,(C)*) we have Y u;(x)v;(z~1) = 0.
i=1

2 Self-dual [52, 26, 10] codes, ¢ of type 3 — (14, 10)

The weight enumerators of self-dual codes of lengths from 52 to 62 are known
[3]. For [52,26,10] codes there are two possible weight enumerators:

Wso1 = 14250y + 7980y'% + 42800y + - - - |
Wisoo = 14 (442 —1683)y™ + (6188 + 643)y™* + 53040y + - - - |

where 0 < 8 <12, 8 # 11 (see [6]). Codes exist for W21 and for Wiz 2 when
B=1,...7,12 3].

Let C be a binary self-dual code of length 52 with an automorphism o of
type 3 — (14, 10). Since we are looking for codes with minimum weight 10, Cy
is a [24,12,> 4] binary self-dual code. There are exactly 30 inequivalent such
codes: 4 decomposable eg, e16 D es, fi6 D es, 6%2 and 26 indecomposable codes,
labeled As4 to Zoy [4]

Coordinate positions from 43 to 52 correspond to the fixed points of C,
so each choice for these fixed points can lead to a different subcode F,. For
any 4-weight vector in C); at most 2 nonzero coordinates may be fixed points.
An examination of the vectors of weight 4 in all 30 codes eliminates 26 of
them. By investigation of all alternatives for a choice of the 3-cycle coordinates
in the remaining codes Ga4, Xo4, Y24 and Zoy4 we obtain, up to equivalence,
all possibilities for the generator matrix or the code F,. We constructed 24
inequivalent codes, namely Goy.1, G24,2, X24.1, Y241, - - -, Y24,6, Z24.1, - - -, Z24,15-

C, is a quaternary hermitian self-dual [14,7,> 5] code. There is a unique
such code g14. Let 7 be a permutation of the fourteen cycle coordinates in one
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of the 24 possible generators of C;. Denote by C™ the self-dual code determined
by 7C, and the matrix A, where A is one of the matrices Ga4,1,. .., Z24,15.

The permutational part of the transformations, preserving the hermitian
code C,, forms a subgroup of the symmetric group Sg, denoted by L.

Lemma 2.1 If 1y and ™ are in one and the same coset of Sy, factorized by L,
then C™ and C™ are equivalent.

L={(1,2,5,10,4,14,11)(3,7,12,9,8,13,6),(1,10)(2,11)(3,12)(4,9)(5,6)(7,13)(8,14)}.
In order to classify all codes we have consider all representatives of the transver-
sal of Sg, factorized by L. The number of codes obtained and the type of their
weight enumerators are listed in Table 1. Note that the value 8 = 8 for Wisg 2
is new. We summarize the results in the following.

Theorem 2.2 There are exactly 1308250 inequivalent binary [52,26,10] self-
dual codes with automorphism of type 3 — (14,10). There exist at least 640
binary self-dual [52,26, 10] codes with weight enumerator Wsa o for = 8.

Table 1: [52,26,10] self-dual codes with automorphism of type 3 — (14, 10)

G241 |Goa2 | Xoa1| You,1 |Youo | Yous | Yoau | Yous | Yous | Zoa,1i | Zoa2 | Zoas
4005 | 708 [72259| 43 8369 |93528|72361|183555(150249| 8066 [159280|71671

1 1 1,4 6 0,3,6] 3,6 [1,3,7/0,3,6 | 2,5 2 2,5 1,4
Zosa | Zoas | Zoae | Zoar | Zoag | Zoag |Zoai0| Zoajat | Zoajne |Z2a13| Zoaia | L2a1s
# 111130(25730{11324|148174| 5980 |27802|72361| 67299 | 15216 [93067| 2068 | 4005
Bl 4,7 | 3,6 | 2,5 2,5 |Wsaa| 2,5 |1,4,7| 4,7 5,8 [1,4,7| Wsa 1

=¥

3 Self-dual [52,26, 10] codes, o of type 3 — (16,4)

Let C is a binary self-dual [52,26,10] code with an automorphism of type
3 — (16,4). In this case Cy, is a quaternary hermitian [16,8, > 5] code. There
are exactly 4 inequivalent such codes 2fg, 1 + 2f5, 116, 4 /4.

Cr is a binary self-dual [20,10,> 4] code. There are exactly 7 such codes
dio + dg, dis + es, dog, dgl , dg + fo, dg + d4 and cg + dg. By investigation of
all alternatives for a choice of the 3-cycle coordinates in these codes there are
exactly 3 codes with do > 10: 1 code from dg and 2 codes from dg + fo. Using
the subcode C; from dé we constructed [52, 26, 10] codes with Wi o for =9
and 12. The value 8 = 9 is new. The code with 8 = 12 that is equivalent to
the one constructed by us was first discovered by Stefka Bouyuklieva (private
comunication).

Remark: It was proved in [6] that 8 (in Wi 2) satisfies 0 < § < 12, 5 # 11,
so wether a code with § = 10 exists is still an open question. We list the new
codes with generator matrices (I|Ag) for f =8, 9 and 12.
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01000011111011110111100001 01000101111001000011110110 11001001011011000011000100
11001111101101111110110011 11000001101100100110110101 11010011011000001110110001
10001100011001111001111011 01001010101110110100010110 01100101011111001000110001
10101111011110000101100110 01101100111010111101010010 01101100001100100101110011
01011100111111111111011001 01010001000101000111010000 01001000110010010101100110
11110011101111111000001101 11110011001010100101010100 01011011101100111011010010
01101100100111101011101100 01101011011101100111010111 01111001100101010000100010
11010011011011001000000001 11010100000001110100100110 11111011110110111000000001
10111111110011011011110000 11111001101000000011010011 01110101000000101100010000
01100101111101010100100111 01000010011000101111000011 01011010110101000110010101
11011011100110011000101011 01000100100010110001100010 11101101101000001100100101
10111110011010110101000000 10111101010101110101001100 10010100101000000011101011

Aae 00000111111101100110011101 A 10101010010011101100101010 Aqo— 00111011100100001001001100

8= 00001101100111001100100010 * 9 10011110110111010110011000 * 12= 00100110111101000101011001
00001010010100101101011001 00011110000101000100001111 10001001111000011101011001
00001001001110000001111011 10110100001101000011111010 00001001110101111000011000
11110100111110100000010100 10101011110110001000001101 10000001110011101010111001
10100010101110010111000000 00000001101001011110101111 10000110001110100100011111
01010110011110110010011110 10000000110100110001101110 00001101110000010011001101
11000000000001110011101101 00001001010010101111001111 00000011110001110111011100
00110110111001001101101000 10011101111001101110010111 00100010011111111101100110
00100100100100101100001111 10111010000101011110110000 10010110110000101001000101
00010010010010011100001111 10101110001101110001010100 00111101011110010101010000
00110000001111111010100011 00110001110000000001110111 00110001110000000001110111
00000110000001110101011110 00000111111110000000000010 00000111111110000000000010
00000000111110001110011010 00000000000000111111110001 00000000000000111111110001
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O0600I11IeHN KBA3UIUKJINYHYI KOJIOBE HAJ{ MAJIKHI
KpaiHu 110JIeTa

IINAMEH XPUCTOB plhristov@tugab.bg

Kareapa Maremaruka, Texundecku yauBepcureT — ['abpoBo
5300 T'abposo, Bbarapust

Heka ¢ [n, k, d]q 03HAUUM JIMHEEH KO, C JUbJDKUHA 7, PA3MEPHOCT k M MUHUMAJIHO
pascroaaue Ha Hamming d van none GF(q).Eqma or ocHOBHUTE 381841 B T€OpH-
sATa Ha JIMHEHHOTO KOAUpPaHe € J1a cé KOHCTPYUPAT KOJOBE C Ha-rOJIsIMO MUHUMAJI-
HO pascrosinue. JIokasaHo e, 4e MHOro OT Haii-1o6puTe KoJoBe(M ONTHMAJIHH) Ca
06001IeHN KBA3UIMKINIHU KOJIOBE. B TO3M OKIa[ ca MpPEeICTaBeHN CTPYKTYpPAaTa,
Hail-BaKHUTE JePUHUINN, TEOPEMU U PE3YJITATH HA MPOEKT 3a JUCEPTAIUS BbPXY
IOCOYEHATa TEMA.

1 VYBox

JluneitnusaT kox, C' ce Hapuda 0600weH yurAuveH K00, aKO KOHCTAHTHO-IIUKJIMIHO
U3MECTBaHe Ha BCAKA KOJIOBA JIyMa € CbINO KOJOBa JLyMa.

(co,c1y.vvyema1) —>  (aCm—1,€0y.-.,Cm—2)
Marpumnara
[ bo by by -+ bm—2 bpo1 |
abpm—1 b by - bp-3 bpm2
G = abp—2 abyp—1 by -+ bp_a bp_3 ,
L ab1 (Ibg abg tee abm,1 b(_) 1

kbaero a € GF(q)\{0} ce napuua obobuwena yupkysanma.

Emun xom e obobwen xsasuyukriuver xod, ako € WHBApUAHTEH IOJ, JIeHCT-
BHETO HA KOHCTAHTHO-IUKJIMYHO M3MECTBaHe Ipe3 p mosunuu. JIbikuHara 1,
Ha TaKbB KOJ € KpaTHa Ha p, T.e. n = mp. Upe3 HoAXOAsina IepMyTalys Ha
KOODJUHATHTE

Lp+1,....0m—=1p+1,2,p+2,....(m—1)p+2,...,p,2p,...,mp

ropazkalara MaTpuila Ha 00000ITeH KBAa3UITUK/INYIEH KOJI MOXKe J1a Ce TIPeJc-
TaBU:

G = [G1, Ga, ..., Gy] (1)
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Kbaero (G; ca 0bOOIIEHN ITUPKYIAHTH.

Anrebpara Ha m X m 060bImeHnTe UPKyIanTH Hag noseto GF(q) e uso-
MopdHa Ha aarebpara Ha nosuHOMuTe OT HpbereHa GF(q)[z]/ (2™ — a), ako Ha
G e cbnocraBed nouHOMBT g(x) = by + bix + box? + -+ byy1x™

g(z) ce Hapuua mopakaar HoJIuHOM. AKo a = 1 ce mosrydaBa KJIachbT Ha
KBa3UIMKJINIHATE KoJoBe. Heka

™ —q

(2™ —a,g1(x), g2(), - - ., gp())

h(z) =

KbJeTo g;(x) ca nopastcdawu noauHoMuU.

Ako degh(z) = m, To pasmeprocrTa Ha Koja k = m u (1) e nopaxama
marpuna Ha kojga. Ako degh(x) = k < m, nopaxjamara MaTpuila Ha KOJIa ce
noJIyvaBa upe3 npemaxsane Ha m — k pega or (1). B Tosu ciy4aii obobriennTe
KBA3UIMKJINYHA KOJIOBE C€ HAPUYAT U3POJeHU.

2 OcHoBHa 3ajJia4a

Jla ce onmumusupa napamemspa d na suneer ko0 npu 3adadent, cmotiHocmu
na dpyeume dea n u k u gurcuparo xpatino nore GF(q). C dy(n, k) osnaga-
BaMe Hali-rojisiMaTa Bb3MOXKHA CTOMHOCT Ha MHUHHUMAJIHOTO pa3CcTosiHue d, 3a
KOSITO CbIIecTBYBa [n,k,d|, xon. Kox ¢ mapamerpu [n, k,dy(n, k)], ce napuua
d-onTUMAaJIEeH.

3 OcHoBHU TeopeMn

CrenBaiure TeOpeMU IPEJICTABAT Hali-BaXKHUTE TEOPETHIHU PE3y/ITaTH, OTHA-
CSIINA Ce JI0 KJIaca Ha O00ODIIEHNTE KBASUIIMKJ/IMYHI KOJIOBE.

Teopema 3.1 (BCH — QT eparuua 3a 0606uwenu K8a3UGUKAUYHY K0006€)
Hexa C e obobwen ksasuyuriuuen kod nad GF(q) ¢ dsascuna n = pm u
nopastcdauy, 6exmop om euda

g(x) = (fi(x)g(@), fa(x)g(x), -, fo(2)g(x))

wodemo g(x)|(z™ —a), g(x), fi(x )GGF(Q)[x]/(HCm a) u(fi(x ) ( "—a)/g(z)) =
1 3a 6carxo 1 < i < p. Toeasa p(d+1) < d( ), mﬂ?emo §¢: s+ (d—1) ca cped
(

nyaume na g(T) 3a HAKOU Yeau wucaa S,d 0) u pasmeprocmma wa C e
pasna na m — deg g(x).

Teopema 3.2 Hexa a = o', xsdemo o e npumumusen esemenm na GF(q).
Axo (m,q — 1)|ig, obobwernusm reazuyukiuuen ko0 ¢ dsadrcuna n = mp Haod
GF(q) e exsusanrenmen na keasuyuriuier ko0 ¢ dsagcuna n mad GF(q).
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4 CrtpyKTypa

JluceprarusTa ce CLCTOU OT YBOJ U YCTUPH IJIABU.

B TJIABA 1 ca pasrienanu ocHOBHUTE Jie(DUHUIIUU, CTPYKTYPHUTE CBOHCTBA
¥ MeTOJM 3a KOHCTPyHpaHe Ha KBa3UIUKJIMIHU U OOOOIIEHN KBA3UITUKJIMTHU
KOJIOBE.

B TJIABA 2 ca xoHCTpyWpaHW KBa3WIIUKJIMTIHU KOJIOBE HaJ IIOJIeTa C JIBa,
gJerupu u oceM ejementa. llosiyaenu ca m 0000IEHN KBASUITUKJINIHE KOIOBE
najg GF(4).

T'JIABA 3 e nocBerena Ha KBa3UIUKJIATHI KOAOBE HAJI [IOJI€Ta C TPU U JE€BET
ejleMeHTa. Pasrimenanu ca 0600IIeHN KBA3UIINKINTHI TPOUYIHN KOHIOBE.

B TJVIABA 4 ca npejacraBenu o600IeHN KBa3UIMKINIHE KOJTOBE HAJI ITOJIETa,
C TIeT U CeJIeM eJIeMEeHTA.

5 OcHoBHU pe3yaTaTu

B To3u pazjen ca mpejcTaBeHH CaMO HSKOU OT KOHCTPYHUPAHUTE ONTUMAJIHN
KOIOBE

5.1 OnTuMaJiHU HUKJINYHUA KOJOBE C BHCOKA CKOPOCT

Hedbunnnus 5.1 Hexa C e [n,k,d|; k00 nad nosemo GF(q). Ha durcupame
i-ma Koopdurama 666 8cAKa k00066 dyma. Caed mosa 0a 83emem SCuKY K00081
dymu na C, Koumo umam HYAG 6 Masu GuUKCUPaHa KoopouHama U 0a Omcmpa-
HUM Ma3yu Koopdurnama om max. IIpu noaosicenue, we ne 8cuuky K0d06u AYmu
UMAM HYAG 68 MA3U NO3UYUA, ule nosyyum ckscer om C xod ¢ napamempu
n—1,k—1,d|,.

B I'maBa 2 e koucrpyupan ruksander [51,9,31]4, Koa KOWTO nMa HOB OPTOro-
HAJIEH KOJT C MHOTO JT0ODU TapaMeTpH: TOJIsiMa PA3MEPHOCT M BUCOKA CKOPOCT.
Tosa e HoBusiT onrTuMadieH [51,42,6]4 ko ¢ Bg = 62220. Upes npuiarane za
OTIEpAITHSITa CKbCABAHE Ha KOJI Ce TMoydaBaT 24 HOBU ONMTHUMAJHU KOJa, KOUTO
mvat pasmeproct 19 < k < 42 u ckopoct R = £ € [0.6785,0.8235]. Torasa e
B CIJI& CJIETHOTO

CaenctBue 5.2 Cswecmsysam onmumasny kodose ¢ dy(bl —i,42 —1i) =6 3a
i=0...23. [1][2]

Jpyrn onTUMaJIHI KOJIOBE, IIOJIydeH! OT IUK/INYHI KOJIOBE -

[124,116, 5]5, [43, 36, 6]7, [57, 50, 6]s, [73, 66, 6]9. |1]
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5.2 OnrumajiHu KOJIOBe, IOJIYYEeHU OT HEU3POJAEeHU 000OIIeHn
KBa3UIMKJINIHA KOIOBE

CwoinecrByBa 06061men kasunuk/andex (30, 10, 13]3 KoJ| ¢ Hopazkialiy moInHO-
MU:

2002110111,2022002021,2011120001.

Cnen nobapsiie Ha cThabOBeTe (2211221122)7 u (1221122112)7

ce nosry4yasa onrumasies [32, 10, 15]3 oz, [1][2]

B JucepramudTa ca IIpeiacTaBeHu OIe OIITHMMAaJITHUTE KOJO0BE!:

25,9, 11]s, [34, 8, 18]3, [20, 6, 13]s, [21, 5, 15]9, [36, 4, 30]9.[1]

Koucrpyupanu
Ilone || HOBH JUHeNHN
KOJIOBE

GF(2) 17 Pasznen 2.1
GF(4) 59 Paznen 2.2
GF(8) 52 Paznen 2.3
GF(3) 50 Pazznen 3.1
GF(9) 57 Pasznen 3.2
GF(5) 42 Paznen 4.1
GF(7) 38 Paznen 4.2
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[pengiara ce MeTos 3a renepupane Ha 2-(v, k, \) nuszaitnu ot nsa najgenu 2-(v, k, \')
n 2-(v, k, \") nuzaitna D' = (P,B') u D" = (P,B") (c 0bmo TOUKOBO MHOKECTBO 1
A=) +)\"). IIpu Tozu meton ce obemuusaBaT baMUIIUTE OT 6JIOKOBE HA M30MOD-
duu xonusi D’ u YD", v, € G Ha obpasyBamuTe IU3AMHU, KATO ,cCe CAUGAM™
CBbp3aHU C au3aiiHuTe Marpuiu. Meroja e TeCTBaH C YaCTUIHU U3YUCTEHUs [IPU
KIacuPUKAIUATA Ha PA3JIOKUMATE JU3ANHHN, NBOHHMN Ha amamaposute 2-(19,9,4)
ausaiinu [3], u npu dactmaHara KiaacupUKalus HA JBOWHHUTE Ha aJaMapOBUTE 2-
(15,7,3) nu3aiinu, nosydeHn or o0eAUHSIBAHETO Ha JIEKCUKOrPadCKA MAKCHUMAJIHUS
2-(15,7,3) nm3aiin ¢ n3oMOpdHN KOMUS HA TPEIACTABATE/IUTE HA METTE KJIAca aJIa-
MapOBU JU3ANHU C Te3W IapaMeTpu [2].

1 OO6enmHsgBaHe HA OU3AMHN U CJANBAHE HA MATPUIIN

CrenBaiure MOHSITHSA U TBbPACHUSI Ca BbBEIEHN 38 000CHOBAaBAHE Ha Pa3ryIesK-
JaHUsT METON U He ca ODIIOIPUETH.

Tebpaenue 1. Hexa D' = (P,B') u D" = (P,B") ca ceomeemno 2-(v, k, \')
u 2-(v, k, A" dusatinu ¢ 06wo moukoso mroscecmeo. Cmpyxkmypama 1a uHuu-
denmmnocm D = (P,B'\JB"), 6 xosamo mouka u 640K ca unyudenmmnu moza6a
u camo mozaea, xozamo ca unyudenmuu 6 duzatina (D' uau D), cadsporcauy
baoxka, € 2-(v, k, N + X" dusaiin.

O6enunennero B = B'|JB” na nsere dbamuun 6nokose B u B’ tpsabsa aa
ce pa3bupa KaTo obemHeHne Ha MYJITUMHOYKECTBA.

Onpenenenne 1. 2-(v,k,\) dusatin D = (P, B) e obedurenue na 2-(v, k, A;)
dusatwume D; = (P, B;), i € {1,2,...,n},n € N, xoeamo B = |J;_, B;.

Tosu dakr zamucsame D = (! | D; wiu D = Dy||Ds||...||Dp.

Tebupaeuune 2. 3a napamempume v, b, r, k u A Ha dusatin, xotimo e obedurerue
Ha n wa opott (n > 2) dusatmna ¢ napamempu 2-(v, b, ik, N;), i € {1,2,...,n}
€O 8 CUAG PABEHCNEANG:

v=v, b=b+..+b,, T=r14+..+rn, k=k A=A+ ..+\
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Tebpaenue 3. Bcexu 2-dusatin D, xotimo e obedunenue na dea dusating D’
u D" ¢ napamempu 2-(v, k, N') u 2-(v, k, \"), e m-ksasuxpamen na 2-(v, k, \*)
Jusatin, xkedemo \* e nati-zoremun obw, deaumen na wucaama N u N, a m =
A/_"_A//

AF

Heka D' u D' ca npa nmzaiiHa ¢ o6IIO TOYKOBO MHOXKECTBO U IapaMeTpu
cborBetHo 2 — (v, k,N) u 2 — (v,k,\"), a G < S, e rpyna or nepMmyranuu Ha
TOYKUTE NUM. HI/Ie HUCKaMe J1a HallpaBUM II'bJIHA K.Ha,CI/ICbI/IKaLH/Iﬂ Ha ,HI/IS&IZHI/ITG oT
suzia D'||D”karo B nporieca Ha reHepupaHe Jia KOHCTPYUPaMe KOJIKOTO Ce MOYKe
no-MaJko msomopdnu auzaitnu. Tasu 3amada ce cBexKa JI0 3aja49a 3a KJIaCh-
dukamsa Ha MATPUIU CBLP3aHU C JU3aiiHuTe.

Onpenenenne 2. Mampuyama C = (¢ij)mxn € 00pa3y6ana 4pes causaHe Ha
mampuyume A = (aij)mxn; ¥ B = (bij)mxn, (3anucsa ce C' = [A||B]), xoeamo
n =mny +ng u mampuyama C' e pagHa 1a MAMPUUGMG

aip - A1n, bin - blm
a1 - A2n, boy - b2n2 (1)
Am1 e Amny bml e bmn2

UAU CE NOAYHABA 0M HEA C PASMECNEBAHE HA cmaabose.

Cropen Onpenerterme 2. marpunata C' = (Cij)mx (n/4n/), 32 €TEMEHTHTE HA
KOSITO Ca B CHJIA PABEHCTBATA:

Cij = Q5,38 Vi € Nm7 _] = Nn’ (2)
Cin/+j = bij,3a Vi € Ny, jE N, (3)

He e eINHCTBEeHATa MATPUIIA, II0JIyYeHa Ype3 CJIHBaHe Ha MATPHIUTE A = (0ij)mxn’
u B = (bjj)mxn. TaxaBa e u Bcsika apyra MaTpuia, ekpuBajenTHa Ha C' OT-
HOCHO TIpEHapexKIaHe Ha CTbJIOOBETE.

IIpumep. Marpurnure

3311111111 3311111111 3311111111 3222111110
1133111111 1132221110 1122222200 1111322201
1111331111 1112203112 1122220022 1220122022
1111113311 1112021312 1122002222 1202120222
1111111133 1110221132 1100222222 1022102222
ca cboTBeTHO paBHu Ha [Mj||My], [M1||Mas], [Ma]|Ms] u [Ma||(1 2) M), kbaero
My n My ca marpunure
i ny
Mi= 11311 My = 12202 (4)
11131 12022
11113 10222



Mateva 43

CrenBanure JIBe TBbPJIECHNAS U CIEACTBUITA U U3BOIUTE OT TIX II03BOJISIBAT C
[TOMOIITa Ha TPYIUTE OT aBTOMOP(MU3MHI HA JIBATA ChCTABSIIN O IM3alHA & Ce
ONTHMU3UPAT IIPECMSITAHUSITA KATO ce HaMaJIi OpOsI Ha Pa3IJIeXKIAHATE CJIydau.

Tebpaenne 4. Hexka A = (ij)mxn’ & B = (bij)mxn» ca mampuyu c pasen
6poti pedose u G < Sy, e epyna om nepmymauuu Ha pedoseme um. 3a ecaxa
deotixa nepmymavuu (¢, V) € GX G cewecmeysa nepmymayus w € G, maxasa
ue mampuyume [pA || YB] u [A || wB] ca G—exsusanermnu.

Ciaeacrsue 4.1.  Mnoowcecmsomo

M={[A|wB] |weG} (5)
cadoporca none edun npedcmasumen Ha ecexu kaac G—eKeusaseHMHU MAMPU-
yu om 6uda [pA || B, 0,1 € G.

Nsson I.  3a noayuasare na coskynrocm om npedcmasument, Ha 6CUNKU KA
cose G—exsusarenmuu mampuyu [pA || YB], ¢, € G e docmamsuno da ce
pazzaedam camo mampuyume om mnosxcecmeomo M om pasencmeso (5).

Tebpaenne 5. Hexa A = (aij)mxn ¥ B = (bij)mxnr ca mampuyu c epynu
om asmomoppusmu na pedoseme csomeemno Auty(A) < Sy, u Aut,(B) < Sp,.
3a npoussoAHG NEPMYMAUUL © € Sy U NPOUIBOAHO USOPAHU A8MOMOPHUIMU
a € Aut,(A) u B € Aut,(B), mampuyume [A || ¢B], [A || ¢8B] u [A || apB|

ca exeusaneHmMHU.

NzBox II.  Axo ma daden eman om KoHcmpyupanemo Ha SCUMKU HEEKGUBA-
aenmimu mampuyu om euda [A || wB] (ksdemo nepmymavyuama w npobazea G 6
npedsapumenno onpedeaer ped) e obpasysara mampuuama [A || pB], mo ecuuxu
nepmymayuu om mrodrcecmeomo A |J oB\{p} mozam da 6sdam nponycramu.

WzBop III.  Kozamo dsotinusm duszatin [D' || ¢ D"] e xoncmpyupan, moorcem
da nponycrem 6CUNKU NEPMYMAYUU HA MOYKUME O MHONCECMBEOMO

Aut(D')g | JpAut(D")\ {p}.

2 Meroa 3a cauBaHe Ha MATPUITA

Meto/ia 3a cimBaHe Ha MaTPUIK C PaBeH OPOil peJloBe ce OCHOBaBa HA HAIIPaBe-
nute u3ogu I 1T u II1. IIpencraBsame HAKpPATKO OCHOBHUTE €JIEMEHTH HA METO/IA,
KaTO aJrOPUTHM Ha ThPCEHE C BPbIIAHE.
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Heka A = (aij)mxn B B = (bij)mxn” ca MaTpuIm ¢ paBeH 6poil pesose,
G < Sy, e rpyna or mepmyranuu Ha pemosere um, u A = Aut,(A) < G n
B = Aut,(B) < G ca cboTBeTHHTE T'PyIH OT aBTOMOPGMU3MHU HA PeJOBeTe.
Cwrinacuo ssoz I, marpunute [A || wB] 3aw € G ce 0bpasyBar upe3 06X0xK 1aHe
Ha ChOTBETHUsI Ha rpynarta G rpad-IbpBo B JEeKCHKOrpadCKU HapacTBalll, Pel
Ha HepMyTaIiuTe, KaTo CJeJ| TeHepupaHe Ha MepMyTallsaTa @ ce IpecKadar
nepmyrarure ot MHOKecTBoTO Ap | 9B\ {p}. Kak moxe na 6bje HanpaBeHO

Tosa? Heka
o 1 2 3 4 ... m—1 m
4 Y1 P2 Y3 P4 . Pm—1 Pm
e TIoCJIeHO pasriieganara nmepmyranus. CireBaiiara mepMy Talust

b= 1 ... me—1 my, .. m—1 m
Y1 ... Pm,—1 wmu wm—l wm

ce I/I36I/Ipa da € Hali-MaJIKaTa Bb3MOXKHA nepmyTanus, Ho-roJjigdMa OT @, KOATO
OTTOBapsd Ha yCJIOBUATA:

hd (1) Pme < ¢m07 wmo € {1a2a "'amo}\{@la@% '--730m071}-

e (2) Yucaoro ¥, 1 ce B3eMa OT MHOXKECTBOTO By, , ChCTOAIIO ce OT Haii-
MaJIKUTe IIPEeJICTABUTENH Ha opbuTuTe Ha crabummsaropa Big, o, o 1
e Prg—
HA MHOXKECTBOTO OT €JIEMEHTHTE ©1, P2, ..., Pm,—1 B Ipynara 5.

e (3) Ako j € {1,2,....m, — 1} u ; > 1, TO j—Tua pex Ha A U peja
C HOMEp Mg Jla He ca OT ejHa opbuTa Ha crabuimsaropa Ag o 1} Ha
ubpsBure j — 1 pena na A B A.

Mezk iy noyuennre Marpuiu [A || wB] moxe na uma G —ekBuasenTau. To-
Ba M3UCKBa JOI'bJIHUTE/IHO (bUITPpUPaHe Ha KpailHaTa CbBKYIIHOCT, KOETO MOXKE
Jla ce HaIPaBH C IIOMOINTa MeToJa 3a ObP30 HaMmpaHe Ha JeKCHKorpadcKn
MaKCHMaJIHATa MaTPUIa OT OpOUTaTa Ha JaJeHa MaTPUIA LIPHU JeHCTBHETO HA
rpyunara G x Sb’+b” [1]

Bakuroyenue. [lo onucanus HAYUH JJO MOMEHTA Ca HAIIPABEHH, ChBMECTHO
¢ Tonanosa, e KiacuduKanum Ha JBORHE Ha aJaMapOBH JU3aiHU. 3a rapaH-
TUpaHe Ha U3YUCJIUTEHATA JOCTOBEPHOCT Ha PE3YJITATHUTE, IPECMITAHUSITA Ca
PaBEHM 0 HIKOJIKO PA3/IMYHU HAYMHA U C PA3JUIHHU [POIPAMU, CDABHSIBAHU
ca ¢ usBecTHHU pesyararu [4], [5] u ca moJIoXKEeHN Ha JIOI'bIHATEIHN JIOTNIECKH
IPOBEPKH.

O6ekT Ha wbpBaTa Kiaacudukanus [3] ca Bcnuku pasioxumu 2-(19,9, 8) au-
3aifHu ¢ aBTOMOPMU3BLM OT PeJl 3, IMPUCHIIL € IHOBDEMEHHO Ha JIBATa ChCTABSIIN
2-(19,9,4) nuzaiina. O6musaT 3a TpuTe AU3aiiHa AaBTOMOPMUIbM TO3BOJISIBA, BCsI-
Ka OpOMTHa MATPHUIA Ha JBONHUS JU3aliH Ja ce Pasriexk/ia KaTo CbCTABEeHA OT
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OpOUTHN MATPUIK Ha, JBaTa 00pasyBaIiy aJaMapoBu au3aiiHa. Taka BCUYKA Op-
OMTHM MATPHUIK CE TOJIYYABAT UPe3 CAU6AHE Ha eKBUBAJICHTHU KOs Ha JIBETe
marpuniu My u My ot crp. 42. Ilpu pasmupsiBaHeTO Ha MOJyYeHUTE OPOUTHU
MaTPHUIU O MATPUINA Ha WHIUAIEHTHOCT, C€ CJIeIU CKAJapPHOTO MPOU3BEICHUE
Ha BCsiKa JIBOIKA PEJIOBE HA ChCTABSAIIUTE MATPUIM HA WHIMJICHTHOCT.

ITpu Bropara kiacudukaims [2] ce camBaT MaTpUIUTe HA UHIUIEHTHOCT Ha
nBa 2-(15,7,3) amamapoBu am3aiiHa, KaTo MO0 TO3M HAYHWH CE IOJIydaBaT Pas3jio-
kumu 2-(15,7,6) qusaiiau ¢ pa3JndHU IPyIu 0T aBTOMOPMU3ME (BKIIOUATETHO
TPUBHAJHATA I'PYIIA).
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Ontological model BELLOnto
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Abstract. The aim of the current research is make a semantic analysis of digital
objects included in an archive of unique Bulgarian church bells. As an object of cul-
tural heritage the bell has general properties such as geometric dimensions, weight,
sound of each of the bells, pitch of the tone as well as acoustical diagrams obtained
using contemporary equipment. We develop an ontological model BELLOnto to
investigated archive and apply some methods for RDF graph signing on it.

1 Introduction

Church bells are one of the most important parts of our cultural heritage. We
consider a digital archive of unique Bulgarian bells with more than 3 000 digital
resources [1], [5]. Based of in these data we make an intelligent annotation of
knowledge.

2 Indexing description of digital resources

2.1 Indexing digital resource

Metadata are text fields, built-in media files or additional text files (XML,
XMP) for recording information on the nature of the digital resource.

The presence of metadata with correctly placed points of connection ensures
speed and accuracy of the application, and user interaction. We use Dublin
Core standard and technology for adding metadata (text boxes) attached to
the digital resource [3]. following metadata are used:

e Fields to classify the resource:

— title - the name used to describe the artifacts;

— identifier - like geographic coordinates;

! This work was partially supported by Bulgarian National Science Fund (I0-03-02/2006).


mailto:galina@math.bas.bg
mailto:gdimkov@math.bas.bg
mailto:todor@math.bas.bg
mailto:nickey@mail.bg

48 CTA 2010

— relation - links to other digital resources;

— subject - type, genre definition, contents of the site by keywords and
phrases, classification under headings (text list);

— rights - information about the holder of intellectual property rights
to the resource.

e Fields in content:

— title, subject (present in the upper point);

— description - brief description of the content, short annotation;

— language - language peculiarities and dialect;

— contributor - bearer original creator of material, recorder, an infor-
mant, a brief description.

e Fields description file format and digitization:

— format - description and parameters used of digitized object;

— type - type of media resource, description (text, interviews, photos,
clip, song, etc.);

creator - digitalizer, a situation of creating a digital object digitiza-
tion (date of digitization, digitalizer(s), etc.);

— source - initial object, description.

2.2 Semantic web and ontology model

When you build a large storage of data of different types is a need for a descrip-
tion of stored knowledge. The new technology of Semantic web on provides
the necessary tools to build a large knowledge base with media resources. The
knowledge is in all media resources, hidden in their metadata and ontology
thesauruses. The knowledge base include information about creation, digiti-
zation, technical data, sound and image information, history annotation and
many other data of objects in digital fund. The most widespread standards for
semantic description of resources are SGML, XML, RDF [4], OWL [7]. Descrip-
tion Framework (RDF) is framework for describing and exchanging data. At its
core RDF contains nodes and attached there to pairs of and values. Nodes can
be any Web resources. Attributes are properties of knots and their values are
either atomistic or other resources or meta data [4]. We make an experimental
semantic annotation, based on the current W3C Semantic Web initiative (RDF
[4], RDFS, OWL [7]) of the resources in digital archive of unique bells. We use
the RDF data model, it provides a model for describing resources of bells.
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3 BELLOnto

3.1 BELL Ontology
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Using information of metadata annotation we make an ontology explain of

Bulgarian bells.

digital resource of RDF data model:

Description

On the next figure is shown an example of description of

RDF Declaration of resources

bell

main bell resource linked with
property history information

«RDF:Description RDF:ID="bell"»
«RDF:type RDF:resource="#bell"»
«/RDF:Description»

connection between bell resource
and history Information property

«RDF:Property RDF:ID="history-information-property"»
«RDFS:domain RDF:resource="#bell'»
«RDFS:range RDF:resource “#bell"»

«/RDF:Property»

history
information

history information property
of bell resource,

linked with creator property
and created by axiom

«RDF:Description RDF:ID="history-information"»
«RDF:type RDF:resource="#history-information"»
«RDFS:subClassOf RDF:resource “#bell"»

«/RDF:Description»

created by

created by axiom between
history information property and
creator property

«RDF:Property RDF:ID="created-by"»
«RDFS:domain RDF:resource="#history-information"»
«RDFS:range RDF:resource “#bell"»
«/RDF:Property»

creator

creator property, subproperty of
history information property

«RDF:Description RDF:ID="creator"»
«RDF:type RDF:resource="#history-information”»
«RDFS:subClassOf RDF:resource “#bell"»
«/RDF:Description»

3.2 Signing RDF graph

Definition 3.1 Given an RDF statement, the Minimum Selfcontained Graph
(MSG) containing that statement is the set of RDF statements comprised of the
following:

e The statement in question;

e Recursively, for all the blank nodes involved by statements included in the
description so far, the MSG of all the statements involving blank nodes.

Theorem 3.2 [6/ An RDF model has an unique decomposition in MSGs.
The MSG definition and properties say that it is possible to sign a MSG attach-
ing the signature information to a single arbitrary triple composing it. Along
with the signature, an indication of the public key to use for verification might
be provided [2].
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Complex numbers and triangles
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We propose here a theme, suitable for extra curricular work with high school
students.

Let the complex numbers 21, 22, 23 be different and noncollinear. The object
of our study will be the triangle with vertices these three points. The simple
Z3 — 21

Z3 — 29
ratio is invariant with respect to the linear function f(z) = a.z +b . On the

other hand the linear function is transformation of similarity. Consequently, if
23— 2

ratio of z1, 29, 23 is the quantity & = . It is well-known that the simple

we assign the number £ = to the triangle with vertices z;, 22, 23, the

23 — 2
same number will corresponj to 511 its similar triangles.

As a complex number £ is a point of the complex plane. Then it is interesting
to determine some sets of points in the complex plane corresponding to special
classes of triangles. To simplify the investigations and in view of the foregoing
remark we can replace the arbitrary chosen triangle 212923 by a similar triangle,
more convenient for our goal. Let us transform the triangle zj20z3 by the

function f(z) = T S f(z3) =0, f(22) =1, f(z1) =&

22—2’3'

o

Figure 1

Without lost of generality we can choose 3§ > 0. For the case 3§ < 0 we
take £ instead of &.

Since the triple of points 21, z2, z3 has six permutations, they form five more


mailto:gdimkov@math.bas.bg

52 CTA 2010

simple ratios. Expressed by £ these ratios are

£—1 1 1 1 1

=" O= T e @

In fact these ratios are Mobius transformations with real coefficients. Hence
they all preserve the real axis. Three of them, namely the identity, n(£) and
¢(&) has positive determinants of the coefficients. Hence they preserve the up-
per and the lower halfplane respectively. By this reason we shall work only in
the upper halfplane. Let £ be a point on the positive part of the imaginary axis.
It is clear that on this half-line are the points corresponding to the rectangular
triangles. According to the foregoing to each triangle and its similar triangles
correspond three complex numbers. We have to find two more lines also con-
taining points corresponding to rectangular triangles. These two lines are the
images of the positive imaginary axis under the transformations 7(¢) and ¢(§).
Simple computations give the half-line z = 1 +4.t,¢t > 0 and the upper half of
the circle [z — 3| = 3 respectively (figure 2).

-1

Wy
'
r
I

Figure 2

Since the lines of the rectangular triangles are determined, it is immediately
clear that the hatched regions on figure 3 are the domains of the obtuse triangles.
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Consequently the hatched domain in figure 4 is the union of the three do-
mains of the acute triangles. The determination of these domains will be dis-
cussed later.

Figure 4

Next special class are the isosceles triangles. The simplest solution is the
line z = % +i.t,t > 0. Applying once more the transformations n(¢) and (&)
we obtain two semicircles. Namely |z| = 1 and |z — 1] = 1. The results are
sketched on figure 5. The intersecting point of the three lines represents the
equilateral triangles.

Figure 5

To find the domains of the acute triangles we combine the results for rect-
angular and isosceles triangles (figure 6).

Figure 6

Then erase the sub arcs, corresponding to the obtuse triangles (figure 7).
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Figure 7

On figure 7 two positions of £ over the line z = % + ittt > % are marked.
They are from both sides of the equilateral point. Choosing each of them we
obtain two systems of triples of domains. They are shown on figure 8.
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Figure 8
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B crarusra ce pasriexxia mIpoeKpUpaHeTO U Ch3JABAHETO Ha MOozesa Ha Bupryasmno
Nudopmarmonno IIpocrparcrso “AutoKnow”. OcHoBuTe JI€HOCTH Ca CBbP3aHU C
MYJITUMEIUEH IUTUTAIEH apXUB, EKCIEPUMEHTAJIHA BUPTyaJsHa aBTOMOOMITHA J1abo-
paTopust 1 aBTOMOOMIHA OGUOINOTEKA OT AUTUTATUIUPAHN MYJITUMEINIHI 00Pa3IIH.
Paspaborenn ca meroian 3a aHOTHpaHE Ha KOJIEKIIMU OT OOEKTH, aHAJIU3 W CHUIYD-
HOCT HA JIAHHUTE B JUTUTAJHUS apXuB. [[poeKTUpaHa € eKCIepuMeHTaJHA BUPTY-
ajJHa aBTOMOOHMIHA jabopaTopus W obydaBalna cpefla 3a 3HAHUS B OOJaCTTa Ha
aBTOMOOMJIUTE.

1 BwobBenenne

esra Ha paspaborkaTa MPeIBUXKIa HAyIHH U3CAEIBAHUS U Cb3JaBaHe Ha MO-
nest Ha Bupryanmno Uuadopmanuonto IIpocrparcrso “AutoKnow”: mysrrumeu-
el gururajien apxub AutoKnow u ekcrepuMeHTaJHa BAPTYAJIHA aBTOMOOUIHA
naboparopust (EBAJI) ¢ aBromobuina 6ubamoreka (AB) or aurnranmsnpanu
MyJaTAMeIniHT obpasnu u 3D 0bekTu oT uzbpaHa rpymna or 00eKTu B 00JIacTTa
Ha aBTOMOOMJIHATA TexHuKa. V3ciaeaBaHusTa UMaT MyJITHIUCHUILIIAHAPEH Xa-
PaKTEp U Ce M3II'bJHSIBAT OT KUl OT PA3HOPOIHU CITEINAIUCTH U OPraHU3aIlAHN.
3arToBa e ¢b3/aJIeHa € MEXK Y MHCTUTYIIHOHAJHA UHTerpalus Mexk 1y Mucturyra
10 MaTeMaThKa 1 HH(OpMaTHKa - Bbiarapcka akanemust Ha HaykuTe, Hamumona-
JieH BoeHeH yauBepcurer “‘Bacui Jleeckn”, hupma “ABTo THbpHOBO” U TAPTHROPH
(Asrokbiu Ha Ilexko, Mepuenec, @uar u ap.).

Wscnensanusra u padpaborsanero Ha “AutoKnow” ca B ciaeqHuTe B3aXMHO
CBbP3aHU HAIIPABJICHUS:

! This work was partially supported by Bulgarian National Science Fund (I0-03-02/2006).


mailto:galina@math.bas.bg
mailto:todor@math.bas.bg
mailto:nickey.noev@gmail.com
mailto:sestefanov@abv.bg
mailto:jshterev@abv.bg

o6 CTA’2010

o Cb3raBaHe U aHOTHPaHE Ha KOJIEKIIUU OT 00eKTH B chepaTa Ha IPEBO3HUTE
CPeJICTBA;

e Cn3yiaBaHe, aHAIN3 U CUTYPHOCT Ha JUTHTAIEH apxuB u AB;
o FExcrniepumenTasina BUPTyasHa aBTOMOOM/IHA, JTaDOPATOPHUS;

e OOyuapala cpejia 3a IOJIydaBaHe U TeCTBaHe Ha 3HAHUSI B 0DJacTTa Ha
aBTOMOOMJIUTE.

PaspaboTrkara Ha BUpTYaHOTO HH(DOPMAIMOHHO MpocTparcTBO “AutoKnow”
€ OCHOBala Ha IIPEJUIIHN U3Ccje/Banus1, Meronu u cpeacrsa |1, [2], [3], [4], 7],
[6], [8], [5] u ¢ momorra Ha Texunosoruure |9, [10] u [11]. Codryepaure paspa-
6OTKHI Cca IPObIKEHUE Ha CJCTHATE JBe NH(MOPMAIMOHHE CHCTEMHU:

o AutoWorld - undopmarnmonna cpejia 3a aBTOMOOUIIA U CUCTEMU;

e MindCheck - nndopmanmonna cpena 3a obydenne u recrsane [5].

2 WMnadopmarnmonna cpeaa “AutoWorld”

Nudopmanmonnara cucrema “AutoWorld” e ocHoBana Ha 6a3a JaHHE 38 ABTOMO-
oum u cucremu, ch3maaera mpe3 2002-2005 roa. or I'. Bormamosa, T. Tomopos
u xosiektuB. Oyukimonannocrta Ha “AutoWorld” Brirousa: maneaun 3a Obp3
JIOCT'BIT, 38 PETUCTPAIINS W BXOJ HA TOTPEOUTENNTE, MEHIOTA W (DYHKITHOHATHA
JIEBHTH 3a Obp30 TbpceHe 10 KJ4oBu jgyMu. OCHOBHHTE (DYyHKIIMOHAJHU Xa-
PAKTEPUCTUKHU CE ChCTOAT OT YCTPOWCTBO U MCTOPHS Ha aBTOMObUIIa. [maBHuTe
maHen B nHPOPMAIMOHHATA CPeJia, Ca:

o Mogenu: M360p Ha Mapka U MOJET;

o Uudopmarnus 3a MapKu, MOJIEJIN U YCTPOMCTBOTO HA aBTOMOOWUJIA.
o XapaKTepUCTUKU HA MOJIE/IN;

e VHTepakTUBHU CXEMH HA MOJIEJIN;

e Cmpasku: T'bpcene Ha MOJIE/IH, CIIPABKA 32 PE3YJITATH OT ThbPCEHE HA MO-
JIeJ1N;

e Cpasugpane: CpaBHeHNE Ha MOJIE/IN, CIPABKA 38 PE3YJITATH OT CPABHEHUE
Ha MOJIEJNN;

o [ajyiepus: VI300p Ha Mapka U MOJeJI, CIIPABKa 3a Pe3yJITaTh OT raJiepusi Ha
MOJIe U, N300parKeHusT Ha MOJIEJIN;
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e B1p3o Thpcene;
e Kapra ma caiiTa;

Jombaaureinn GyHKIMOHATHOCTH 3a moTpeburenu Ha “AutoWorld” ca :
ObpP30 THPCEHE BCUYKNA MOJEJIH U PEIAKIMs Ha XapaKTEPUCTHUKUTE Ha aBTO-
MOOMJIATE 38 8 MUHUCTPATOPCKN akayHTH. OCBeH TOBa MHMOPMAIMOHHATA, CUC-
rema “AutoWorld” npemocraBs jgerailiina cxeMaTwdHa HHPOPMAIIAs, CBbP3aHa
C PA3JINIHEU YaCTH OT yCTPOHCTBOTO Ha aBTOMOOMIIA ¥ MHTEPAKTUBAHA CXeMa Ha
YCTPOUCTBOTO Ha ABTOMOOMJIA.

MindCheck e unpopManmoHHa cpeja 3a 00yUIeHNe U TeCTBaHe C U3BEXKJAHEe
Ha BEPHUTE W IPEIIHM OTTOBOPH 3a yJIECHEHHE Ha 00yJIaeMHTe.

Upes npuioxkenue Ha OeiicoBcka Kiacudukamus or Data Mining B erekT-
poHHOTO OOyUenue, KJIacupUKAIIATa Ha aBTOMOOWIN Ce U3BBbPIIBA 0 Pa3IN-
uu kpurepun [3|. Iocienunre naBar pasinmden morses Ha o0OydaeMuTe BbDPXY
arperaTuTe, Bb3JUTe U MOJEJINTE Ha aBTOMOOU/INTE.

W3BbpllieHn ca eCTeCTBEH eKCIEPUMEHT W CHMYJIAIMOHHO MOJEJIHNpaHe Ha
JBUZKEHNETO Ha aBTOMOOWJI B CTOXACTUYHA CPEa IMPHU CJICIHUTE PEXKUMU Ha
JIBIZKeHHe [2]:

® IIPABOJIMHEIHO YCKOPUTEJIHO JIBUKCHUE;
® KPUBOJIMHENHO JIBUKEHUE;
® IIPEOJI0JIsIBAHE HA HPEIATCTBUSI.

OcnoBHusT U3BO/JI €, Y€ CUMYJIAIIUOHHUAT MOJIEJI Ha JBUXKEHUETO Ha aBTOMOOMJT
B CTOXaCTHUYHa Cpela MO2Ke Ja Ce II0JI3Ba 3a IIPOBeXKJ/J1aH€ Ha YHCJ/IEHU €eKCIIe-
PUMEHTH, KaTO PE3YyJTAaTUTE OT TdX I€ Ca 3HAYMMMH W B roOJigIMa CTEIEH IIe
CBbOTBETCTBaAT Ha peaTHUTE IIPOIECH.

3 3akJjrouyeHue

[TpoekTHT 3a BUPTYATHOTO WHMOPMAIMOHHOTO MpocTpancTBo “AutoKnow” ce
CbHCTOU OT:

e Mudopmanuonna cpega AutoWorld /MIMI/ - ocroBa 3a ¢b3jaBaHeTo Ha
AB /IMI/,

e Mudopmanuonna cpega MindCheck /UMU/ - obyuasamma cpena /UM /;

e ExkcrmepuMmenTasHa BUpTya Ha aBToMobmaHa taboparopust EBAJI ¢ aBro-

MobGuina 6ubsmoreka AB /HBY /.
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IIpeacron ma ce mObJaHAT HOBH (PYHKIIMOHAJHOCTH Ha JUTHTAIHUTE OHOJIMO-
TeKH ¥ WHMOPMAINOHHUTE CPedd U JOMbIAHUTEJHH (DOTO, BUIEO MaTEPUAJIH,
TekcToBe, 3-D anumanuu, yporu u KOJeKInu OT 00eKTH B cdepaTa Ha MPEBO3-
HUTE CPeACTBa.
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